初中数学苏科版八年级下册 9.4 菱形的判定及性质 同步训练
年级: 学科: 类型:同步测试 来源:91题库
一、单选题(共10小题)
如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是( )






①OG= AB;②图中与△EGD全等的三角形共有5个;③由点A、B、D、E构成的四边形是菱形;④S四边形ODGF=S△ABF , 其中正确的结论是( )


二、填空题(共6小题)
如图,平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为 .
如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为 .
尺规作图:过直线外一点作已知直线的平行线.
已知:直线l及其外一点A.
求作:l的平行线,使它经过点A.
小云的作法如下:(1)在直线l上任取一点B;(2)以B为圆心,BA长为半径作弧,交直线l于点C;(3)分别以A、C为圆心,BA长为半径作弧,两弧相交于点D;(4)作直线AD.直线AD即为所求.
小云作图的依据是 .
三、解答题(共9小题)
如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°,得到△ADE,连接BD和CE,BD与CE交于点F.
(1)求证:△AEF≌△DEB;
(2)证明:四边形ADCF是菱形;
(3)若AB=4,AC=5,求菱形ADCF的面积.






