初中数学北师大版八年级下学期 第三章 3.2 图形的旋转
年级: 学科: 类型:同步测试 来源:91题库
一、单选题(共9小题)
1、如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AB=1,∠B=60°,则△ABD的面积为( )
A .
B .
C .
D .




2、如图,△ABC以点C为旋转中心,旋转后得到△EDC,已知AB=1.5,BC=4,AC=5,则DE=( )
A . 1.5
B . 3
C . 4
D . 5
3、如图,将△ABC绕点A顺时针旋转到△ADE的位置,且点D恰好落在AC边上,则下列结论不一定成立的是( )
A .
B . BC=DE
C . BC//AE
D . AC平分


4、如图,是国旗中的一颗五角星图案,绕着它的中心旋转,要使旋转后的五角星能与自身重合,则旋转角的度数至少为( ).
A . 30°
B . 45°
C . 60°
D . 72°
5、将数字“6”旋转180°,得到数字“9”; 将数字“9”旋转180°,得到数字“6”.现将数学“69”旋转180°,得到的数字是( )
A . 96
B . 69
C . 66
D . 99
6、在图形的旋转中,下列说法错误的是( )
A . 图形上的每一点到旋转中心的距离都相等
B . 图形上的每一点转动的角度都相同
C . 图形上可能存在不动的点
D . 旋转前和旋转后的图形全等
7、如图,在△ABC中,∠BAC=55°,∠C=20°,将△ABC绕点A逆时针旋转α角度(0
α
180°)得到△ADE,若DE
AB,则α的值为( )



A . 65°
B . 75°
C . 85°
D . 130°
8、如图,将
(其中
,
),绕
点按顺时针方向旋转到
的位置,使得点
,
,
在同一直线上,则旋转角的度数为( )








A .
B .
C .
D .




9、如图,在4×4的正方形网格中,△MNP绕某点旋转90°,得到△M1N1P1 , 则其旋转中心可以是( )
A . 点E
B . 点F
C . 点G
D . 点H
二、填空题(共5小题)
1、如图,在△OAB 中,∠AOB=90°,AO=3,BO=4.将△OAB 绕顶点 O 按顺时针方向旋转到△OA1B1 处,此时线段 OB1 与 AB 的交点 D 恰好为线段 AB 的中点, 线段
A1B1 与
OA 交于点 E,则图中阴影部分的面积 .
2、如图,两块三角尺的直角顶点靠在一起,BC=3,EF=2,G 为 DE 上一动点,把三角尺DEF 绕直角顶点 F 旋转一周,在这个旋转过程中,B,G 两点的最小距离为 .
3、如图,将△ACB绕点C顺时针方向旋转43°得△A’CB’,若AC⊥A’B’,则∠BAC= 度.
4、如图,已知点A(2,1),B(0,2),将线段AB绕点M逆时针旋转到A1B1 , 点A与A1是对应点,则点M的坐标是 .
5、如图,已知l1∥l2 , 把一块含30°角的直角三角尺按如图所示的方式摆放,边BC在直线l2上,将△ABC绕点C顺时针旋转50°,则∠1的度数为 .
三、解答题(共4小题)
1、如图,△ABC中,∠BAC=120o , 以BC为边向外作等边△BCD,把△ABD绕着D点按顺时针方向旋转60o后到△ECD的位置。若AB=6,AC=4,求∠BAD的度数和AD的长.
2、在三角形
中,
(如图),将三角形
绕着点
逆时针旋转得到三角形
(点
、
分别与点
、
对应),如果
与
的度数之比为
,当旋转角大于
且小于
时,求旋转角的度数.














3、如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数
4、如图,在等边△ABC中,AB=6,点D是线段BC上的一点,CD=4,将△ABD绕点A旋转后得到△ACE , 连接CE . 求CE的长.