初中数学青岛版九年级上学期 第2章 2.1锐角三角比

年级: 学科: 类型:同步测试 来源:91题库

一、单选题(共10小题)

1、已知甲、乙两坡的坡角分别为α、β,若甲坡比乙坡更陡些,则下列结论正确的是(  )

A . tanα<tanβ B . sinα<sinβ C . cosα<cosβ D . cosα>cosβ
2、如图,在△ABC与△A′B′C中,AB=AC=A′B′=A′C,∠B+∠B′=90°,△ABC,△A′B′C′的面积分别为S1、S2 , 则(   )

A . S1>S2 B . S1=S2 C . S1<S2 D . 无法比较S1、S2的大小关系
3、如何求tan75°的值?按下列方法作图可解决问题,如图,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延长CB至点M,在射线BM上截取线段BD,使BD=AB,连接AD,依据此图可求得tan75°的值为(   )

A . 2 B . 2+ C . 1+ D .
4、如图,在平面直角坐标系中,∠α的一边与x轴正半轴重合,顶点为坐标原点,另一边过点A(1,2),那么sinα的值为(    )

A . B . C . 2 D .
5、如图,∠AOB是放置在正方形网格中的一个角,则tan∠AOB(    )

A . B . C . 1 D .
6、Rt△ABC中,如果各边长度都扩大 倍,则锐角A的各个三角函数值(  )
A . 不变化 B . 扩大2倍 C . 缩小 D . 不能确定
7、如图, 在△ABC中,∠BAC=90°, AB=20, AC=15, △ABC的高AD与角平分线CF交于点E,则 的值为(    )

A . B . C . D .  
8、如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,则下列比值中不等于cosA的是(   )

A . B . C . D .
9、如图,在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树的坡面上的距离AB为(    )米。

A . 5cosα B . C . 5sinα D .
10、如图,某停车场入口的栏杆 ,从水平位置绕点 旋转到 的位置,已知 的长为 米.若栏杆的旋转角 ,则栏杆 端升高的高度为(    )

A . B . C . D .

二、填空题(共8小题)

1、图中是抛物线形拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα= ,tanβ= ,以O为原点,OA所在直线为x轴建立直角坐标系,则点P到水面OA的距离是       m.

2、如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC=      

3、在Rt△ABC中,∠C=90°,tanA= ,△ABC的周长为18,则S△ABC      .
4、如图,菱形ABCD的对角线AC,BD相交于点O.若tan∠BAC= ,AC=6,则BD的长是      .

5、为解决停车难得问题,在如图一段长56米的路段开辟停车位,每个车位是长5米、宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出      个这样的停车位(

6、如图,在Rt△ABC中,∠ACB=90°,CDAB边上的中线,若BC=6,AC=8,则tan∠ACD的值为      

7、已知 ,且 为锐角,则m的取值范围是      
8、计算:       

三、解答题(共8小题)

1、在Rt△ABC中,∠C=90°,若 ,求cosA,sinB,cosB.
2、已知tanα= ,α是锐角,求tan(9O°﹣α),sinα,cosα的值.
3、如图,四边形ABCD中,∠ADB=∠DBC=90°,AD=6,CD=12,tanA= ,求sinC的值.

4、如图,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα= = ,根据上述角的余切定义,解下列问题:

(1)ctan30°=      
(2)如图,已知tanA= ,其中∠A为锐角,试求ctanA的值.
5、如图,△ABC中,AB=AC=13,BD⊥AC于点D,sinA=

(1)求BD的长.
(2)求tanC的值.
6、在 中, 的对边分别为a,b,c, ,求c的值.
7、太阳能光伏建筑是太阳能光伏系统与现代绿色环保住宅的完美结合,老刘准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°.求改建后南屋面边沿增加部分AD的长,(结果精确到0.1米)

(参考数据:sin18°≈031,cos18°≈0.95,tan18v≈0.32,sin36°≈0.59)

8、一艘货轮以34海里/时的速度在海面上向正南方向航行,当它行驶至B处时,某观察者发现在货轮的北偏东75°方向有一灯塔C;货轮继续向南航行1.5小时后到达A处,某观察者再次发现灯塔C在货轮的东北方向.求此时货轮与灯塔C的距离.(结果保留到个位)(参考数据:sin75°≈0.97,cos75°≈0.29,tan75°≈3.73,

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 初中数学青岛版九年级上学期 第2章 2.1锐角三角比

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;