初中数学人教版八年级上册 第十三章 13.4课题学习 最短路径问题

年级: 学科: 类型:同步测试 来源:91题库

一、单选题(共10小题)

1、如图,点A,B在直线l的同侧,若要用尺规在直线l上确定一点P,使得AP+BP最短,则下列作图正确的是(   )

A . B . C . D .
2、如图,四边形 中, ,在 上分别找一点 ,使 周长最小时,则 的度数为(   )

A . B . C . D .
3、如图,∠AOB=30º,∠AOB内有一定点P,且OP=10.在OA上有一动点Q,OB上有一动点R.若ΔPQR周长最小,则最小周长是(    )

A . 10 B . C . 20 D .
4、如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点AON上有一点B , 当△PAB的周长取最小值时,∠APB的度数是(   )

A . 40° B . 100° C . 140° D . 50°
5、如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是(    )


A . 3 B . 6 C . 5 D . 4
6、如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为(    )

A . 140° B . 100° C . 50° D . 40°
7、如图,正 的边长为 ,过点 的直线 ,且 关于直线 对称, 为线段 上一动点,则 的最小值是( )

A . B . C . D .
8、如图,等边 的边长为 边上的中线, 边上的动点, 边上一点,若 ,当 取得最小值时,则 的度数为(    )

图片_x0020_100002

A . B . C . D .
9、如图,已知∠O ,点 P 为其内一定点,分别在∠O 的两边上找点 A 、 B ,使△ PAB 周长最小的是(    )
A . . 图片_x0020_100006 B . 图片_x0020_100007 C . 图片_x0020_100008 D . 图片_x0020_100009
10、如图所示,在等边△ABC中,D,E分别是BC,AC的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在(    )

图片_x0020_259146989

A . △ABC的重心处 B . AD的中点处 C . A点处 D . D点处

二、填空题(共5小题)

1、如图,等腰三角形ABC底边BC的长为 4cm,面积是12cm2 , 腰 AB的垂直平分线EF交AC于点F,若 D为 BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为      cm.

图片_x0020_969100582

2、在直角坐标系中,点A(-1,1),点B(3,2),P是x轴上的一点,则PA+PB的最小值是       。

3、如图, ,四边形ABCD的顶点A在 的内部,B,C两点在OM上(C在B,O之间),且 ,点D在ON上,若当CD⊥OM时,四边形ABCD的周长最小,则此时AD的长度是      .

图片_x0020_100017

4、如图,等边△ABC的边长为2,过点B的直线 且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是      .

图片_x0020_100006

5、如图,正方形ABCD的边长为3,点E在边AB上,且BE=1,若点P在对角线BD上移动,则PA+PE的最小值是      

图片_x0020_100013

三、解答题(共4小题)

1、如图,△ABC三个顶点的坐标分别为A(4,5)、B(1,0)、C(4,0).

(1)画出△ABC关于y轴的对称图形△A1B1C1 , 并写出A1点的坐标;

(2)在y轴上求作一点P,使△PAB的周长最小,并求出点P的坐标及△PAB的周长最小值.

2、如图,小河边有两个村庄A、B.要在河边建一自来水厂向A村与B村供水.

(1)若要使水厂到A、B村的距离相等,则应选择在哪建厂?
(2)若要使水厂到A、B村的水管最省料,应建在什么地方?
3、                                                    
(1)已知:如图,点M在锐角∠AOB的内部,在OA边上求作一点P,在OB边上求作一点Q,使得ΔPMQ的周长最小;

(2)已知:如图,点M在锐角∠AOB的内部,在OB边上求作一点P,使得点P到点M的距离与点P到OA边的距离之和最小.

4、点P、P1关于OA对称,P、P2关于OB对称,P1P2交OA、OB于M、N,若P1P2=8,则△MPN的周长是多少?

四、综合题(共1小题)

1、如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于点M

(1)若∠B=70 , 求∠NMA.  
(2)连接MB,若AB=8cm,△MBC的周长是14cm,求BC的长.  
(3)在(2)的条件,直线MN上是否存在点P,使由P,B,C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 初中数学人教版八年级上册 第十三章 13.4课题学习 最短路径问题

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;