初中数学浙教版七年级下册2.5 三元一次方程组及其解法 同步训练
年级: 学科: 类型:同步测试 来源:91题库
一、单选题(共10小题)
1、在国家倡导的“阳光体育”活动中,老师给小明30元钱,让他买三样体育用品;大绳,小绳,毽子.其中大绳至多买两条,大绳每条10元,小绳每条3元,毽子每个1元.在把钱都用尽的条件下,买法共有( )
A . 6种
B . 7种
C . 8种
D . 9种
2、桌面上有甲、乙、丙三个杯子,三杯内原本均装有一些水.先将甲杯的水全部倒入丙杯,此时丙杯的水量为原本甲杯内水量的2倍多40毫升;再将乙杯的水全部倒入丙杯,此时丙杯的水量为原本乙杯内水量的3倍少180毫升.若过程中水没有溢出,则原本甲、乙两杯内的水量相差多少毫升?( )
A . 80
B . 110
C . 140
D . 220
3、三角形的周长为18cm,第一边与第二边的长度和等于第三边长度的2倍,而它们长度的差等于第三条边长的
,这个三角形的各边长为( )

A . 7、5、8
B . 7、5、6
C . 7、1、9
D . 7、8、4
4、三元一次方程组
的解为( )

A .
B .
C .
D .




5、利用加减消元法解方程组
,下列做法正确的是( )

A . 要消去z,先将①+②,再将①×2+③
B . 要消去z,先将①+②,再将①×3-③
C . 要消去y,先将①-③×2,再将②-③
D . 要消去y,先将①-②×2,再将②+③
6、三元一次方程组
消去一个未知数后,所得二元一次方程组是( )

A .
B .
C .
D .




7、已知
是方程组
的解,则a+b+c的值是( )


A . 3
B . 2
C . 1
D . 无法确定
8、有5个数,其中任两个数的和分别为:4,5,7,7,8,9,10,10,11,13.则将这5个数从小到大排列后,中间的一个数是( )
A . 3
B . 4
C . 5
D . 6
9、小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( )
A . 31元
B . 30元
C . 25元
D . 19元
10、利用两块相同的长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是( )
A . 84cm
B . 85cm
C . 86cm
D . 87cm
二、填空题(共5小题)
1、小红到超市购买钢笔、笔记本、圆珠笔发现:若购买3支钢笔、7个笔记本、1支圆珠笔共需315元;若购买4支钢笔、10个笔记本、1支圆珠笔,共需420元钱.现若只购买2支钢笔、6个笔记本,共需 元钱.
2、某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元,若该店第二天销售香蕉t千克,则第三天销售香蕉 千克.(用含t的代数式表示.)
3、一次数学竞赛准备了22 支铅笔作为奖品发给一、二、三等奖的学生,原计划发给一等奖每人6支,二等奖每人3 支,三等奖每人2支,后来改为一等奖每人9支,二等奖每人4支,三等奖每人1支,则获一、二等奖的学生总共有 人.
4、已知:a、b、c是三个非负数,并且满足3a+2b+c=5,2a+b﹣3c=1,设m=3a+b﹣7c,设s为m的最大值,则s的值为 .
5、蜂蜜具有消食、润肺、安神、美颜之功效,是天然的健康保健佳品.秋天即将来临时,雪宝山土特产公司抓住商机购进甲、乙、丙三种蜂蜜,已知销售每瓶甲蜂蜜的利润率为10%,每瓶乙蜂蜜的利润率为20%,每瓶丙蜂蜜的利润率为30%.当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,商人得到的总利润率为20%.那么当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,该公司得到的总利润率为 .
三、解答题(共3小题)
1、一个三位数的各位数字的和等于18,百位数字与个位数字,的和比十位数字大14,如果把百位数字与个位数字对调,所得新数比原数大198,求原数!
2、一方有难八方支援,某市政府筹集了抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)
车型 |
甲 |
乙 |
丙 |
汽车运载量(吨/辆) |
5 |
8 |
10 |
汽车运费(元/辆) |
400 |
500 |
600 |
(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?
(2)为了节约运费,该市政府可以调用甲、乙、丙三种车型参与运送,已知它们的总辆数为16辆,你能通过列方程组的方法分别求出几种车型的辆数吗?
(3)求出那种方案的运费最省?最省是多少元.
3、阅读材料:善于思考的小明在解方程组
时,采用了一种“整体代换”的解法,解法如下:

解:将方程②8x+20y+2y=10,变形为 2(4x+10y)+2y=10③,把方程①代入③得,2×6+2y=10,则 y=﹣1;把 y=﹣1 代入①得,x=4,所以方程组的解为: 请你解决以下问题:
(1)试用小明的“整体代换”的方法解方程组

(2)已知
x、y、z,满足
试求 z 的值.
