初中数学北师大版九年级上学期 第二章 2.6 应用一元二次方程

年级: 学科: 类型:同步测试 来源:91题库

一、单选题(共4小题)

1、将一块长方形桌布铺在长为3m,宽为2m的长方形桌面上,各边下垂的长度相同,且桌布的面积是桌面面积的2倍,求桌布下垂的长度.设桌布下垂的长度为xm,则所列的方程是(   )
A . (2x+3)(2x+2)=2×3×2 B . 2(x+3)(x+2)=3×2 C . (x+3)(x+2)=2×3×2 D . 2(2x+3)(2x+2)=3×2 21/4x
2、扬帆中学有一块长30m.宽20m的矩形空地,计划在这块空地上划出四分之—的区域种花.小禹同学设计方案如图所示.求花带的宽度。设花带的宽度为x m.则可列方程为( )

A . (30-x)(20-x)= ×20×30 B . (30-2x)(20-x)= ×20×30 C . 30x+2×20x= ×20×30 D . (30-2x)(20-x)= ×20×30
3、某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是 ,则这种植物每个支干长出的小分支个数是(   )
A . B . C . D .
4、如图,空地上(空地足够大)有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m2 . 若设AD=xm,则可列方程(    )

A . (50﹣ )x=900 B . (60﹣x)x=900    C . (50﹣x)x=900 D . (40﹣x)x=900

二、解答题(共2小题)

1、某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?

2、如图,有一块矩形硬纸板,长 ,宽 .在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为

三、综合题(共4小题)

1、安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千元)与每千元降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:

(1)求y与x之间的函数关系式;
(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?
2、某商场在去年底以每件80元的进价购进一批同型号的服装,一月份以每件150元的售价销售了320件,二、三月份该服装畅销,销量持续走高,在售价不变的情况下,三月底统计知三月份的销量达到了500件
(1)求二、三月份服装销售量的平均月增长率
(2)从四月份起商场因换季清仓采用降价促销的方式,经调查发现,在三月份销量的基础上,该服装售价每降价5元,月销售量增加10件,当每件降价多少元时,四月份可获利12000元?
3、已知y=ax2+bx+1,当x=1时,y=0;当x=2时,y=3.
(1)求a、b的值
(2)当x=-2时,求y的值
4、一家水果店以每千克2元的价格购进某种水果若干千克,然后以每千克4元的价格出售,每天可售出100千克,通过调查发现,这种水果每千克的售价每降低1元,每天可多售出200千克.
(1)若将这种水果每千克的售价降低 元,则每天销售量是多少千克?(结果用含 的代数式表示)
(2)若想每天盈利300元,且保证每天至少售出260千克,那么水果店需将每千克的售价降低多少元?
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 初中数学北师大版九年级上学期 第二章 2.6 应用一元二次方程

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;