初中数学人教版九年级上学期 第二十五章 25.3 用频率估计概率

年级: 学科: 类型:同步测试 来源:91题库

一、基础巩固(共4小题)

1、已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为(   )
A . 20 B . 30 C . 40 D . 50
2、做抛掷同一枚啤酒瓶盖的重复试验,经过统计得“凸面朝上”的频率约为0.44,则可以估计抛掷这枚啤酒瓶盖出现“凸面朝上”的概率约为( )
A . 22% B . 44% C . 50% D . 56%
3、林业部门要考察某种幼树在一定条件下的移植成活率,下图是这种幼树在移植过程中幼树成活率的统计图:

估计该种幼树在此条件下移植成活的概率为      (结果精确到0.01).

4、如图是一个可以自由转动的转盘,如表是一次活动中的一组统计数据:

转动转盘的次数n

100

150

200

500

800

1000

落在“铅笔”的次数m

68

111

136

345

546

701

转动转盘一次,落在“铅笔”的概率约是      (结果保留小数点后一位).

二、强化提升(共5小题)

1、经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,由于该十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为 ,向左转和直行的频率均为 .
(1)假设平均每天通过该路口的汽车为5 000辆,求汽车在此向左转、向右转、直行的车辆各是多少辆;
(2)目前在此路口,汽车向左转、向右转、直行的绿灯亮的时间都为30 s , 在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你利用概率的知识对此路口三个方向的绿灯亮的时间做出合理的调整.
2、一个不透明袋子中有1个红球和n个白球,这些球除颜色外无其他差别.
(1)当n=1时,从袋中随机摸出1个球,摸到红球与摸到白球的可能性是否相同?      .(填“相同”或“不相同”)
(2)从袋中随机摸出1个球,记录其颜色,然后放回,大量重复该实验,发现摸到红球的频率稳定于0.25,则n的值是      
(3)当n=2时,从袋中摸出一个球,不放回,然后再摸一个球,请用列表或画树状图的方法求两次摸出的球颜色不同的概率.
3、布袋里有50个形状完全相同的小球,小红随机摸出一个球,记下颜色后放回摇匀,重复以上操作300次,发现摸到白色的球有61次,则布袋中白球的个数最有可能是(    )
A . 5个 B . 10个 C . 15个 D . 20个
4、某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品。下表是活动进行中的一组统计数据:

图片_x0020_100022

(1)计算并完成表格:

转动转盘的次数n

100

150

200

500

800

1000

落在“铅笔”的次数m

68

111

136

345

564

701

落在“铅笔”的频率m/n

0.68

0.74

0.69

0.705

(2)请估计,当n很大时,频率将会接近多少?
(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?
(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1°)
5、甲、乙两名同学在一次用频率去估计概率的实验中,绘出了某一结果出现的频率的折线图,则符合这一结果的实验可能是(   )

A . 掷一枚正六面体的骰子,出现1点的概率 B . 抛一枚硬币,出现正面的概率 C . 任意写一个整数,它能被2整除的概率 D . 从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率

三、真题演练(共4小题)

1、为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:

组别(cm)

x<160

160≤x<170

170≤x<180

x≥180

人数

5

38

42

15

根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是(   )

A . 0.85 B . 0.57 C . 0.42 D . 0.15
2、为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.


(1)填空:样本容量为      a=      
(2)把频数分布直方图补充完整;
(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.
3、柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:

种子数n

30

75

130

210

480

856

1250

2300

发芽数m

28

72

125

200

457

814

1187

2185

发芽频率

0.9333

0.9600

0.9615

0.9524

0.9521

0.9509

0.9496

0.9500

依据上面的数据可以估计,这种植物种子在该实验条件下发芽的概率约是      (结果精确到0.01).

4、下列说法错误的是(    )
A . 必然事件发生的概率是1 B . 通过大量重复试验,可以用频率估计概率 C . 概率很小的事件不可能发生 D . 投一枚图钉,“钉尖朝上”的概率不能用列举法求得
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 初中数学人教版九年级上学期 第二十五章 25.3 用频率估计概率

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;