2018-2019学年初中数学北师大版八年级下册2.6 一元一次不等式组 同步练习
年级: 学科: 类型:同步测试 来源:91题库
一、单选题(共10小题)
1、已知a,b为实数,则解可以为﹣2012<x<2012的不等式组是( )
A .
B .
C .
D .




2、已知关于x的不等式组
仅有三个整数解,则a的取值范围是( )。

A .
≤a<1
B .
≤a≤1
C .
<a≤1
D . a<1



3、下列哪个选项中的不等式与不等式
组成的不等式组的解集为
.( )


A .
B .
C .
D .




4、已知不等式
,其解集在数轴上表示正确的是( )

A .
B .
C .
D .




5、下列不等式组中,无解的是( )
A .
B .
C .
D .




6、把不等式组
的解集表示在数轴上,下列不符合题意的是( )

A .
B .
C .
D .




7、不等式组
的解集在数轴上表示正确的是( )

A .
B .
C .
D .




8、一组数据2,3,6,8,x的众数是x,其中x是不等式组
的整数解,则这组数据的中位数可能是( )

A . 3
B . 4
C . 6
D . 3或6
9、不等式组
的解集是
,那么
的取值范围是( )



A .
B .
C .
D .




10、把不等式组
的解集表示在数轴上,下列不符合题意的是( ).

A .
B .
C .
D .




二、填空题(共5小题)
1、不等式组
的所有整数解的和为 .

2、若不等式组
的解集为3≤x≤4,则不等式ax+b<0的解集为 .

3、对于任意实数
、
,定义一种运算
,等式的右边是通常的加减和乘法运算.例如:
.请根据上述定义解决问题:若
,且解集中有两个整数解,则
的取值范围是 .






4、不等式组:
的整数解为

5、关于 x 的不等式组
的整数解共有3个,则a的取值范围是

三、解答题(共6小题)
1、解不等式组 

请结合题意填空,完成本题的解答.
(Ⅰ)解不等式(1),得 .
(Ⅱ)解不等式(2),得 .
(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为 .
2、某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.
(1)求A型空调和B型空调每台各需多少元;
(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?
(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?
3、如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.
(1)在方程①3x-1=0,②
③x-(3x+1)=-5 中,不等组
的关联方程是


(2)若不等式组
的一个关联方程的根是整数, 则这个关联方程可以是 (写出一个即可)

(3)若方程 3-x=2x,3+x=
都是关于 x 的不等式组
的关联方程,直接写出 m 的取值范围.


4、湖州某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共10台,具体情况如下表:
A型 | B型 | |
价格(万元/台) | 15 | 12 |
月污水处理能力(吨/月) | 250 | 200 |
经预算,企业最多支出136万元购买设备,且要求月处理污水能力不低于2150吨.
(1)该企业有哪几种购买方案?
(2)哪种方案更省钱?并说明理由.
5、解不等式组
, 并把不等式组的解集在数轴上表示出来,写出不等式组的非负整数解.

6、某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1
820元.
(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元.
(2)学校更具实际情况,要求购买这两套课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳的
,该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?
