初中数学苏科版九年级上册 第二章 对称图形——圆 综合测试卷

年级: 学科: 类型:单元试卷 来源:91题库

一、单选题(共6小题)

1、

如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为(   )
 

A .      B .     C . 3 D . 5
2、如图,在等腰Rt△ABC中,∠C=90°,AC=BC=4,以A为圆心、AC长为半径作弧,交AB于点D,则阴影部分的面积是( )

A . B . C . D .
3、如图,在半径2的圆形纸片中,剪一个圆心角为90°的扇形(图中阴影部分),则这个扇形的面积为(   )

图片_x0020_1261258561

A . π B . C . D .
4、如图,点A,B,C,D在 上, ,若 ,则 的度数为(   )

图片_x0020_100001

A . 20° B . 25° C . 30° D . 40°
5、如图,AB是半圆的直径,O是圆心,C是半圆上的点,D是 上的点,若∠BOC = 50°,则∠D的大小为(   )

A . 100° B . 105° C . 110° D . 115°
6、如图,王老师将汽车停放放置在地面台阶直角处,他测量了台阶高 ,汽车轮胎的直径为 ,请你计算直角顶点到轮胎与底面接触点 长为(   ).

A . B . C . D .

二、填空题(共10小题)

1、一个圆锥的主视图为边长等于 的等边三角形,则这个圆锥的侧面积为       .

2、已知一圆锥的母线为 ,底面圆的直径为 ,则此圆锥的侧面积为       (保留 ).
3、圆锥的母线长为 ,侧面积为 ,则圆锥的底面圆半径        .
4、如图,小正方形的边长均为1,扇形OAB是某圆锥的侧面展开图,则这个圆锥的底面周长为      .(结果保留π)

图片_x0020_100018

5、如图,在矩形ABCD中,AB=4,AD=6,点E是AD所在直线上的一点,过点A作AN⊥BE于N,点M是BC上一动点,连接NM,MD,则MN+MD的最小值为      .

6、已知圆锥的底面圆的半径是2.5,母线长是6,其侧面展开图的面积      .
7、用半径为6,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为      .
8、如图,在矩形 中, 分别是 边上的点,若 经过点 ,且与 分别相切于点 ,则 的半径为      .

9、小明用彩纸给爸爸做一顶生日帽,其左视图和俯视图如图所示,其中AB=24 cm,AC=36 cm,则至少需用彩纸      cm2(接口处重叠面积不计).

10、如图,已知⊙O的半径为m,点C在直径AB延长线上,BC=m.在过点C的任一直线l上总存在点P,使过P的⊙O的两切线互相垂直,则∠ACP的最大值等于      .

三、解答题(共10小题)

1、如图: ,D、E分别是半径OA和OB的中点,求证:CD=CE.

图片_x0020_100012

2、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D.求AD的长.

图片_x0020_100012

3、如图, ,D、E分别是半径OA和OB的中点,试判断CD与CE的大小关系,并说明理由.

图片_x0020_100023

4、如图,四边形 内接于 为对角线, ,过点A作 的延长线于点E.求证: .

图片_x0020_100019

5、已知:如图,AB为⊙O的直径,OD∥AC.求证:点D平分 .

图片_x0020_100012

6、如图所示,△ABC内接于⊙O,AB=AC,D在 上,连接CD交AB于点E,B是 的中点,求证:∠B=∠BEC.

图片_x0020_100024

7、如图,在⊙O中,弦AB与弦CD相交于点M,且AB=CD,求证:BM=DM.

8、⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=12cm,CD=16cm,求AB和CD之间的距离.
9、如图1是某奢侈品牌的香水瓶,从正面看上去(如图2),它可以近似看作⊙O割去两个弓形(由弦及其所对的弧组成的图形叫做弓形)后余下的部分与矩形ABCD组合而成的图形(点B、C在⊙O上),其中BC∥EF;从侧面看,它是扁平的,厚度为1.3cm.已知⊙O的半径为2.5cm,BC=1.4cm,AB=3.1cm,EF=3cm,求香水瓶的高度h.

 

10、四边形 ABCD 内接于⊙O,CB=CD,∠A=100°,点 E在 上,求∠E 的度数.

图片_x0020_100010

四、综合题(共13小题)

1、如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.

(1)求证:CD为⊙O的切线;

(2)若CD=2AD,⊙O的直径为20,求线段AC、AB的长.

2、如图,点O在∠APB的平分线上,⊙O与PA相切于点C.

(1)求证:直线PB与⊙O相切;
(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长.
3、在△ABC中,AB=AC=10,BC=12.△ABC的内切圆☉O与BC,AC,AB分别相切于点D,E,F,求:
(1)AF,BD,CE的长;
(2)△ABC的内切圆的半径.
4、如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=120°,点E在上.

(1)求∠AED的度数;
(2)若⊙O的半径为2,则弧AD的长为多少?
(3)连接OD,OE,当∠DOE=90°时,AE恰好是⊙O内接正n边形的一边,求n的值.
5、问题探究

(1)如图1,点A,B在直线l的同侧,请你在直线l上找一点P,使得AP+BP的值最小(不需要说明理由);


(2)尝试体验:如图2,菱形ABCD的边长为6,对角线AC=6 ,点E,F在AC上,且EF=2,求DE+BF的最小值。
(3)解决应用如图3,在四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值?若存在,请求出最大值;若不存在,请说明理由。
6、如图, 的平分线交 的外接圆于点 的平分线交 于点

(1)求证:
(2)若 ,求 外接圆的半径.
7、如图,在平面直角坐标系中,点A与点B关于原点O对称,点A ,点C ,点P在直线BC上运动.

图片_x0020_100021

(1)连接AC、BC ,求证:△ABC是等边三角形;
(2)求点P的坐标,使∠APO=
(3)在平面内,平移直线BC,试探索:当BC在不 同位置时,使∠APO= 的点P的个数是否保持不变?若不变,指出点P的个数有几个?若改变,指出点P的个数情况,并简要说明理由.
8、如图,四边形ABCD内接于⊙O,AC是⊙O的直径,过点B作BE⊥AD,垂足为点E,AB平分∠CAE.

图片_x0020_100016

(1)判断BE与⊙O的位置关系,并说明理由;
(2)若∠ACB=30°,⊙O的半径为4,请求出图中阴影部分的面积.
9、如图,AB是⊙O的一条弦,点C是⊙O外一点, OC⊥OA,OC交AB于点P、交⊙O于点Q,且CP=CB=2.

图片_x0020_100013

(1)求证:BC是⊙O的切线;
(2)若∠A=22.5°,求图中阴影部分的面积.
10、如图,矩形OABC中,点A,点C分别在x轴,y轴上,D为边BC上的一动点,现把 沿OD对折,C点落在点P处,已知点B的坐标为 .

图片_x0020_100022

(1)当D点坐标为 时,求P点的坐标;
(2)在点D沿BC从点C运动至点B的过程中,设点P经过的路径长度为 ,求 的值;
(3)在点D沿BC从点C运动至点B的过程中,若点P落在同一条直线 上的次数为2次,请直接写出k的取值范围.
11、如图,AC是⊙O的直径,点D是⊙O上一点,DE⊥AB,垂足为E,且∠EAD=∠CAD.

(1)求证:BD=CD;
(2)求证:DE是⊙O的切线;
(3)若⊙O半径为5,BE=8,求AD的长.
12、如图,⊙O是△ABC的外接圆,∠ABC=45°,OC∥AD,AD交BC的延长线于D,AB交OC于E.

图片_x0020_100013

(1)求证:AD是⊙O的切线;
(2)若AE=2 ,CE=4.求图中阴影部分(弦AC和劣弧AC围成的部分)的面积.
13、如图,在 中, ,以O为圆心,以 的长为半径作 ,交 于点D,交 于点E,过点B和点O分别作 的平行线,交于点C,连结 .

图片_x0020_100018

(1)若 ,求阴影部分的面积;
(2)试判断 的位置关系,并说明理由.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 初中数学苏科版九年级上册 第二章 对称图形——圆 综合测试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;