初中数学湘教版九年级下册第四章 概率 章末检测(提高篇)

年级: 学科: 类型:单元试卷 来源:91题库

一、单选题(共10小题)

1、某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是(   )


A . 抛一枚硬币,出现正面朝上 B . 掷一个正六面体的骰子,出现3点朝上 C . 一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃 D . 从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球
2、甲乙两人轮流在黑板上写下不超过 的正整数(每次只能写一个数),规定禁止在黑板上写已经写过的数的约数,最后不能写的为失败者,如果甲写第一个,那么,甲写数字(   )时有必胜的策略.
A . 10 B . 9 C . 8 D . 6
3、下列叙述正确的是(    )
A . “如果a,b是实数,那么a+b=b+a”是不确定事件 B . “某班50位同学中恰有2位同学生日是同一天”是随机事件 C . 为了了解一批炮弹的杀伤力,采用普查的调查方式比较合适 D . 某种彩票的中奖概率为 ,是指买7张彩票一定有一张中奖
4、如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为 ,宽为 的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为(    )

A . B . C . D .
5、某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是(  )

实验次数

100

200

300

500

800

1000

2000

频率

0.365

0.328

0.330

0.334

0.336

0.332

0.333

A . 一副去掉大小王的普迺扑克牌洗匀后,从中任抽一张牌的花色是红桃 B . 从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率 C . 抛一枚硬币,出现正面的概率 D . 抛一个质地均匀的正六面体骰子(六个面上分别标有1,2,3,4,5,6),向上的面点数是5
6、下列事件是必然事件的是(    )
A . 如果 ,那么 B . 平分弦的直径垂直于弦,并且平分弦所对的两条弧 C . 抛出的篮球会下落 D . 三角形的内角和是
7、下列说法正确的是( )
A . “概率为0.0001的事件”是不可能事件 B . 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次 C . “任意画出一个等边三角形,它是轴对称图形”是随机事件 D . “任意画出一个平行四边行,它是中心对称图形”是必然事件
8、如图,ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向▱ABCD内部投掷飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率为(    )

图片_x0020_100010

A . B . C . D .
9、现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为 、小明掷B立方体朝上的数字为 来确定点P( ),那么他们各掷一次所确定的点P落在已知抛物线 上的概率为(  )
A . B . C . D .
10、下列说法正确的是(   )
A . 为了解全省中学生的心理健康状况,宜采用普查方式 B . 某彩票设“中奖概率为 ”,购买100张彩票就一定会中奖一次 C . 某地会发生地震是必然事件 D . 若甲组数据的方差S2=0.1,乙组数据的方差S2=0.2,则甲组数据比乙组稳定

二、填空题(共6小题)

1、写一个你喜欢的实数m的值,使得事件“对于二次函数 ,当 时,y随x的增大而增大”成为随机事件,这个实数m的值      .
2、在一个不透明的袋中装有12个红球和若干个白球,它们除颜色外都相同 从袋中随机摸出一个球,记下颜色后放回,并搅均,不断重复上述的试验共5000次,其中2000次摸到红球,请估计袋中大约有白球      
3、袋子里装有4个白球、8个红球、m个黑球,每个球除颜色以外均相同,从袋中任取一个球,若摸到红球的可能最大,摸到白球的可能最小,则m所有可能的取值为      (已知m≠4和8)
4、在平面直角坐标系中,作OOAB,其中三个顶点分别是O(0,0),B(1,1),A( , ),其中点A,O,B不在同一直线上且-2≤ ≤2,-2≤ ≤2, , 均为整数,则所作OOAB为直角三角形的概率是      .
5、公司以3元/ 的成本价购进 柑橘,并希望出售这些柑橘能够获得12000元利润,在出售柑橘(去掉损坏的柑橘)时,需要先进行“柑橘损坏率”统计,再大约确定每千克柑橘的售价,右面是销售部通过随机取样,得到的“柑橘损坏率”统计表的一部分,由此可估计柑橘完好的概率为      (精确到0.1);从而可大约每千克柑橘的实际售价为      元时(精确到0.1),可获得12000元利润.

柑橘总质量

损坏柑橘质量

柑橘损坏的频率 (精确到0.001)

250

24.75

0.099

300

30.93

0.103

350

35.12

0.100

450

44.54

0.099

500

50.62

0.101

6、六张正面分别标有数字 的不透明卡片,它们除数字不同外其余完全相同.将它们背面朝上,洗匀后从中任取一张,以卡片上的数字作为关于x的不等式 中的系数a,如果该不等式有正整数解的概率为 ,则实数b的取值范围是      .

三、解答题(共8小题)

1、一粒木质中国象棋棋子“車”,它的正面雕刻一个“車”字,它的反面是平的,将棋子从一定高度下抛,落地反弹后可能是“車”字面朝上,也可能是“車”字朝下.由于棋子的两面不均匀,为了估计“車”字朝上的机会,某实验小组做了棋子下抛实验,并把实验数据整理如下:

(1)请将表中数据补充完整,并画出折线统计图中剩余部分.
(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的机会,请估计这个机会约是多少?
(3)在(2)的基础上,进一步估计:将该“車”字棋子,按照实验要求连续抛2次,则刚好使“車”字一次字面朝上,一次朝下的可能性为多少?

2、如图,地面上有一个不规则的封闭图形ABCD,为求得它的面积,小明在此封闭图形内画出一个半径为2米的圆后,在附近闭上眼睛向封闭图形内掷小石子(可把小石子近似地看成点),记录如下:

掷小石子落在不规则图形内的总次数

50

150

300

小石子落在圆内(含圆上)的次数m

20

59

123

小石子落在圆外的阴影部分(含外缘)的次数n

29

91

176

(1)当投掷的次数很大时,则m:n的值越来越接近(结果精确到0.1)
(2)若以小石子所落的有效区域为总数(即m+n),则随着投掷次数的增大,小石子落在圆内(含圆上)的频率值稳定在附近(结果精确到0.1);
(3)请你利用(2)中所得频率的值,估计整个封闭图形ABCD的面积是多少平方米?(结果保留π)
3、王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据。

摸球的次数n

100

150

200

500

800

1000

摸到黑球的次数m

23

31

60

130

203

251

摸到黑球的频率mn

0.23

0.21

0.30

0.26

0.253

(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是      ;(保留小数点后两位)
(2)估算袋中白球的个数;
(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树形图或列表的方法计算他两次都摸出白球的概率.
4、如图,放在直角坐标系中的正方形ABCD边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点数作为直角坐标中P点的坐标)第一次的点数作横坐标,第二次的点数作纵坐标).

(1)求P点落在正方形ABCD面上(含正方形内部和边界)的概率.
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD面上的概率为 ,若存在,指出其中的一种平移方式;若不存在,请说明理?
5、有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1,2,3,4(如图所示),另有一个不透明的口袋装有分别标有数0,1,3的三个小球(除数字不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形(指针指向两个扇形的交线时,当作指向右边的扇形),扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.

图片_x0020_100019

(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;
(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.
6、在一个不透明的盒子中放有四张卡片,每张卡片上写有一个实数,分别为2, 卡片除了实数不同外,其余均相同
(1)从盒子中随机抽取一张卡片,请直接写出卡片上的实数是有理数的概率;
(2)将卡片揺匀后先随机抽出一张,再从剩下的卡片中随机抽出一张,然后将抽取的两张卡片上的实数相乘,请你用列表法或树状图 树形图 法,求抽取的两张卡片上的实数之积为整数的概率.
7、乒乓球是我国的国球,比赛采用单局11分制,是一种世界流行的球类体育项目,比赛分团体、单打、双打等数种在某站公开赛中,某直播平台同时直播4场男单四分之一比赛,四场比赛的球桌号分别为“T1”、“T2”、“T3”、“T4”(假设4场比赛同时开始),小宁和父亲准备一同观看其中的某一场比赛,但两人的意见不统一,于是采用抽签的方式决定,抽签规则如下:将正面分别写有数字“1、“2”、“3”、“4”的四张卡片(除数字不同外,其余均相同,数字“1”、“2”、“3”、“4”分别对应球桌号(“T1”、“T2”、“T3”、“T4”(背面朝上洗匀,父亲先从中随机抽取一张,小宁再从剩下的3张卡片中随机抽取一张,比较两人所抽卡片上的数字,观看较大的数字对应球桌的比赛
(1)下列事件中属于必然事件的是      

A . 抽到的是小宁最终想要看的一场比赛的球桌号

B . 抽到的是父亲最终想要看的一场比赛的球桌号

C . 小宁和父亲抽到同一个球桌号

D . 小宁和父亲抽到的球桌号不一样

(2)用列表法或树状图法求小宁和父亲最终观看“T4”球桌比赛的概率
8、新冠疫情期间,某校有“录播”和“直播”两种教学方式供学生自主选择其中一种进行居家线上学习.为了了解该校学生线上学习参与度情况,从选择这两种教学方式的学生中,分别随机抽取50名进行调查,调查结果如表(数据分组包含左端值不包含右端值).

图片_x0020_100017

录播

5

18

14

13

直播

2

15

21

12

(1)从选择教学方式为“录播”的学生中任意抽取1名学生,试估计该生的参与度不低于 的概率;
(2)若该校共有1200名学生,选择“录播”和“直播”的人数之比为 ,试估计选择“录播”或“直播”参与度均在 以下的共有多少人?
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 初中数学湘教版九年级下册第四章 概率 章末检测(提高篇)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;