2021-2022学年北师版数学九年级下册《第一章 直角三角形的边角关系》单元检测B卷
年级: 学科: 类型:单元试卷 来源:91题库
一、单选题(共12小题)
1、在Rt△ABC中,∠C=90°,BC=5,AC=12,则sinB的值是( )
A .
B .
C .
D .




2、sin45°的值是( )
A .
B .
C .
D . 1



3、如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是( )
A . tan55°=
B . tan55°=
C . sin55°=
D . cos55°=




4、如图,在建筑物AB左侧距楼底B点水平距离150米的C处有一山坡,斜坡CD的坡度(或坡比)为
,坡顶D到BC的垂直距离
米(点A,B,C,D,E在同一平面内),在点D处测得建筑物顶A点的仰角为50°,则建筑物AB的高度约为(参考数据:
;
;
)





A . 69.2米
B . 73.1米
C . 80.0米
D . 85.7米
5、如图是一架人字梯,已知
米,AC与地面BC的夹角为
,则两梯脚之间的距离BC为( )


A .
米
B .
米
C .
米
D .
米




6、如图,将长、宽分别为12cm,3cm的长方形纸片分别沿AB,AC折叠,点M,N恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为( )
A . (36
)cm2
B . (36
)cm2
C . 24cm2
D . 36cm2


7、如图是某商场营业大厅自动扶梯的示意图.自动扶梯
的倾斜角为
,大厅两层之间的距离
为6米,则自动扶梯
的长约为(
)( ).





A . 7.5米
B . 8米
C . 9米
D . 10米
8、如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,
于E点,交BD于M点,反比例函数
的图象经过线段DC的中点N,若
,则ME的长为( )



A .
B .
C .
D .




9、如图,
底边
上的高为
,
底边
上的高为
,则有( )






A .
B .
C .
D . 以上都有可能



10、如图,某研究性学习小组为测量学校A与河对岸工厂B之间的距离,在学校附近选一点C,利用测量仪器测得
.据此,可求得学校与工厂之间的距离
等于( )


A .
B .
C .
D .




11、如图,在
中,
,
,
,将
绕点A逆时针旋转得到
,使点
落在AB边上,连结
,则
的值为( )









A .
B .
C .
D .




12、如图,矩形AOBC的顶点A、B在坐标轴上,点C的坐标是(﹣10,8),点D在AC上,将
BCD沿BD翻折,点C恰好落在OA边上点E处,则tan∠DBE等于( )

A .
B .
C .
D .




二、填空题(共6小题)
1、如图,已知正方形ABCD边长为1,E为AB边上一点,以点D为中心,将
按逆时针方向旋转得
,连接EF,分別交BD,CD于点M,N.若
,则
.




2、如图,在矩形
中,
,垂足为点
.若
,
,则
的长为 .






3、将一副三角板如图放置在平面直角坐标系中,顶点A与原点O重合,AB在x轴正半轴上,且
,点E在AD上,
,将这副三角板整体向右平移 个单位,C,E两点同时落在反比例函数
的图象上.



4、一条上山直道的坡度为1:7,沿这条直道上山,则前进100米所上升的高度为 米.
5、如图,在
中,
,D是
上一点(点D与点A不重合).若在
的直角边上存在4个不同的点分别和点A、D成为直角三角形的三个顶点,则
长的取值范围是 .





6、如图,Rt△ABC中,∠BAC=90°,tan∠ABC=
,将△ABC绕A点顺时针方向旋转角α(0°<α<90°)得到△AB′C′,连接BB′,CC′,则△CAC′与△BAB′的面积之比等于 .

三、解答题(共7小题)
1、如图,
两点被池塘隔开,在
外选一点C , 连接
.测得
,
,
.根据测得的数据,求
的长(结果取整数).







参考数据: ,
,
.
2、如图①、图②分别是某种型号跑步机的实物图与示意图.已知跑步机手柄
与地面
平行,踏板
长为
,
与地面
的夹角
,支架
长为
,
,求跑步机手柄
所在直线与地面
之间的距离.(结果精确到
.参考数据:
,
,
,
)

















3、某种落地灯如图1所示,
为立杆,其高为
;
为支杆,它可绕点
旋转,其中
长为
;
为悬杆,滑动悬杆可调节
的长度.支杆
与悬杆
之间的夹角
为
.












(1)如图2,当支杆
与地面垂直,且
的长为
时,求灯泡悬挂点
距离地面的高度;




(2)在图2所示的状态下,将支杆
绕点
顺时针旋转
,同时调节
的长(如图3),此时测得灯泡悬挂点
到地面的距离为
,求
的长.(结果精确到
,参考数据:
,
,
,
,
,
)














4、如图,莽山五指峰景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度,测得斜坡AB=105米,坡度i=1:2,在B处测得电梯顶端C的仰角α=45°,求观光电梯AC的高度.
(参考数据: ≈1.41,
≈1.73,
≈2.24.结果精确到0.1米)
5、“2021湖南红色文化旅游节﹣﹣重走青年毛泽东游学社会调查之路”启动仪式于4月29日在安化县梅城镇举行,该镇南面山坡上有一座宝塔,一群爱好数学的学生在研学之余对该宝塔的高度进行了测量.如图所示,在山坡上的A点测得塔底B的仰角∠BAC=13°,塔顶D的仰角∠DAC=38°,斜坡AB=50米,求宝塔BD的高(精确到1米).
(参考数据:sin13°≈0.22,cos13°≈0.97,tan13°≈0.23,sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)
6、如图,小明同学在民族广场A处放风筝,风筝位于B处,风筝线AB长为
,从A处看风筝的仰角为
,小明的父母从C处看风筝的仰角为
.



(1)风筝离地面多少m?
(2)AC相距多少m?(结果保留小数点后一位,参考数据:
,
,
,
,
,
)






7、计算:
(1)
;

(2)
.
