初中数学人教版八年级上学期 第十三章 轴对称
年级: 学科: 类型:单元试卷 来源:91题库
一、单选题(共10小题)
1、如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D是BC的中点,BE,CF交于点M,如果CM=4,FM=5,则BE等于( )
A . 14
B . 13
C . 12
D . 11
2、如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=( )
A . 60°
B . 70°
C . 80°
D . 90°
3、如图,点P是∠AOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,若△PMN周长的最小值是6 cm,则∠AOB的度数是( )
A . 15
B . 30
C . 45
D . 60
4、如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则
=( )

A .
B . 2
C .
D .



5、如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是( )
A . AE=EC
B . AE=BE
C . ∠EBC=∠BAC
D . ∠EBC=∠ABE
6、若等腰三角形的顶角为50°,则这个等腰三角形的底角度数为( )
A . 50°
B . 65°
C . 80°
D . 130°
7、如图所示是几种名车的标志,请指出:这几个图案中轴对称图形有( )
A . 1个
B . 2个
C . 3个
D . 4个
8、如图,在△ABC中,∠A为钝角,AB=20cm,AC=12cm,点P从点B出发以3cm/s的速度向点A运动,点Q同时从点A出发以2cm/s的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动.当△APQ是等腰三角形时,运动的时间是( )
A . 2.5s
B . 3s
C . 3.5s
D . 4s
9、到三角形三个顶点距离相等的点是( )
A . 三角形三条边的垂直平分线的交点
B . 三角形三条角平分线的交点
C . 三角形三条高的交点
D . 三角形三条边的中线的交点
10、如图所示,三角形ABC中,AB的垂直平分线DE交AC于点D,交AB于点E,如果AC=5,BC=4,则△BCD的周长是( )
A . 6
B . 7
C . 8
D . 9
二、填空题(共10小题)
1、若等腰三角形的一个外角是110°,则其底角为 .
2、如图,在平面直角坐标系中,O 是原点,已知 A(4,3),P 是坐标轴上的一点,若以 O, A,P 三点组成的三角形为等腰三角形,则满足条件的点
P 共有 个.
3、若点A(m,n)与点B(-3,2)关于y轴对称,则m+n的值是 .
4、如图,等腰三角形
的底边
长为
,面积是
,腰
的垂直平分线
分别交
,
于点
、
,若点
为底边
的中点,点
为线段
上一动点,则
的周长的最小值为 .















5、如图,在△ABC中,∠ACB=81°,DE垂直平分AC,交AB于点D,交AC于点E.若CD=BC,则∠A等于 度。
6、如图,一种滑翔伞的形状是左右成轴对称的四边形ABCD,其中∠BAD=150°,∠B=40°,则∠ACD的度数是 °.
7、如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,AC的长为 ;△ABC的周长为 .
8、如图,在△ABC中,∠C=2∠A,过点C的直线能将△ABC分成两个等腰三角形,则∠A的度数为
9、一等腰三角形一个外角是110°,则它的底角的度数为 .
10、如图,AB是线段CD的垂直平分线,若AC=5cm,BD=3cm,则四边形CADB的周长为 cm.
三、解答题(共7小题)
1、如图,在△ABC中,AB=AC,DE是△ABE的对称轴,△BCE的周长为14,BC=6,求AB的长.
2、如果△ABC关于x轴进行轴对称变换后,得到△A1B1C1 , 而△A1B1C1关于y轴进行轴对称变换后,得到△A2B2C2 , 若△ABC三个顶点坐标分别为A(-2,3)、B(-4,2)、C(-1,0),请你分别写出△A1B1C1与△A2B2C2各顶点坐标.
3、已知如图,点P在
内,请按要求完成以下问题.

(1)分别作P关于OA、OB的对称点M、N,连结MN分别交OA、OB于E、F;
(2)若
的周长为20,求MN的长.

4、如图,在
中,
,
,过B作
于D,求
的度数.





5、如图,在△ABC中,AB=AC,AB的垂直平分线DE交AC于点E,若AB+BC=6,求△BEC的周长。
6、如图,在∆ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.
求证:∠CBE=∠BAD.
7、如图,已知AB∥CD,AC平分∠DAB.


求证:△ADC是等腰三角形.