初中数学浙教版九年级下册第二章 直线与圆的位置关系 章末检测

年级: 学科: 类型:单元试卷 来源:91题库

一、单选题(共10小题)

1、一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于( )
A . 21 B . 20 C . 19 D . 18
2、已知直角三角形的两条直角边分别为12cm和16cm,则这个直角三角形内切圆的半径是(   )
A . 2cm B . 3cm C . 4cm D . 5cm
3、如图,在▱ABCD中, 分别切边AB,AD于点E,F,且圆心O恰好落在DE上 现将 沿AB方向滚动到与边BC相切 点O在 的内部 ,则圆心O移动的路径长为   

A . 4 B . 6 C . D .
4、如图,⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB于P点,O1O2=8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1与正方形ABCD的边只有一个公共点的情况一共出现(   )


A . 3次 B . 5次 C . 6次 D . 7次
5、已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是(   )
A . 0<x≤1 B . 1≤x< C . 0<x≤ D . x>
6、如图,一块直角三角板和一张光盘竖放在桌面上,其中A是光盘与桌面的切点,∠BAC=60°,光盘的直径是80cm,则斜边AB被光盘截得的线段AD长为(   )

A . 20 cm B . 40 cm C . 80cm D . 80 cm
7、如图,⊙O与正方形ABCD是两边AB,AD相切,DE与⊙O相切于点E,若正方形ABCD的边长为5,DE=3,则tan∠ODE为(   )

A . B . C . D .
8、平面内,⊙O的半径为1,点P到O的距离为2,过点P可作⊙O的切线条数为(   )
A . 0条 B . 1条 C . 2条 D . 无数条
9、如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是( )

A . PA=PB B . ∠BPD=∠APD C . AB⊥PD D . AB平分PD
10、已知⊙O的直径为4,圆心O到直线l的距离是4,则⊙O与直线l的关系是(    )
A . 相交 B . 相切 C . 相离 D . 相交或相切

二、填空题(共6小题)

1、已知一块直角三角形钢板的两条直角边分别为30cm、40cm,能从这块钢板上截得的最大圆的半径为      
2、如图,在 中, 的内切圆,点 是斜边 的中点,则       

3、如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是      

4、如图所示, 内切△ABC ,切点分别为  ,  ,  ,  切  于  点,交  , 于点  ,  ,若△ABC 的周长为12,BC=2,则△ADE 的周长是      

5、如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠ABP=35°,则∠P=      .

6、如图,已知⊙O是△ABC的内切圆,切点为D、EF , 如果AE=2,CD=1,BF=3,则内切圆的半径r=       

三、解答题(共8小题)

1、如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.

(1)判断直线AC与圆O的位置关系,并证明你的结论;
(2)若AC=8, ,求AD的长.
2、我们引入如下概念,

定义;到三角形的两条边的距离相等的点,叫做此三角形的准内心,举例:如图1,PE⊥BC,若PE=PD则P为△ABC的准内心

(1)填空;根据准内心的概念,图1中的点P在∠BAC的      上.
(2)应用;如图2,△ABC中,AC=BC=13,AB=10,准内心P在AB上,求P到AC边的距离PD的长.
(3)探究;已知△ABC为直角三角形,AC=BC=6,∠C=90°,准内心P在△ABC的边上,试探究PC的长.
3、AB为⊙O直径,BC为⊙O切线,切点为B,CO平行于弦AD,作直线DC.

①求证:DC为⊙O切线;

②若AD•OC=8,求⊙O半径r.

4、如图,已知AB为⊙O的直径,BD为⊙O的切线,过点B的弦BC⊥OD交⊙O于点C,垂足为M.

(1)求证:CD是⊙O的切线;
(2)当BC=BD,且BD=6cm时,求图中阴影部分的面积(结果不取近似值)
5、阅读以下材料,并按要求完成相应地任务:

莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则 .

如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.

下面是该定理的证明过程(部分):

延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.

∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等),

∴△MDI∽△ANI,

①,

如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF,

∵DE是⊙O的直径,∴∠DBE=90°,

∵⊙I与AB相切于点F,∴∠AFI=90°,

∴∠DBE=∠IFA,

∵∠BAD=∠E(同弧所对圆周角相等),

∴△AIF∽△EDB,

,∴ ②,

 

任务:

(1)观察发现:       (用含R,d的代数式表示);
(2)请判断BD和ID的数量关系,并说明理由;
(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;
(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为      cm.
6、如图,过点P作PA,PB,分别与以OA为半径的半圆切于A,B,延长AO交切线PB于点C,交半圆与于点D.

(1)若PC=5,AC=4,求BC的长;
(2)设DC:AD=1:2,求 的值.
7、如图,已知在△ABC中.

(1)请用圆规和直尺作出△ABC的内切圆⊙P;(保留作图痕迹,不写作法)
(2)若⊙P与AB、BC、AC 分别相切于点D、E、F,且AD=1,△ABC的周长为12,求BC的长.
8、已知:如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC边相切于点D,连结AD.

图片_x0020_673814079

(1)求证:AD是∠BAC的平分线;
(2)若AC= 3,BC=4,求⊙O的半径.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 初中数学浙教版九年级下册第二章 直线与圆的位置关系 章末检测

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;