2015-2016学年山东省威海市高一下学期期末数学试卷

年级:高一 学科:数学 类型:期末考试 来源:91题库

一、选择题(共12小题)

1、cos =(  )
A . B . C . - D . -
2、已知x与y之间的一组数据如表,若y与x的线性回归方程为 =bx﹣2,则b=(  )

x

0

1

2

3

y

1

3

5

7

A . 1 B . 2 C . 3 D . 4
3、从一堆产品(其中正品与次品数均多于2件)中任取2件,观察正品件数和次品件数,则下列每对事件中,是对立事件的是(  )
A . 恰好有1件次品和恰好有两件次品 B . 至少有1件次品和全是次品 C . 至少有1件次品和全是正品 D . 至少有1件正品和至少有1件次品
4、若两圆x2+y2﹣2mx=0与x2+(y﹣2)2=1相外切,则实数m的值为(  )

A . B . - C . D .
5、执行如图所示程序框图,若输入a,b,i的值分别为6,4,1,则输出a和i的值分别为(  )

A . 2,4 B . 3,4 C . 2,5 D . 2,6
6、下列各式中,所得数值最小的是(  )

A . sin50°cos39°﹣sin40°cos51° B . ﹣2sin240°+1 C . 2sin6°cos6° D .
7、在AB=4,AD=2的长方形ABCD内任取一点M,则∠AMD>90°的概率为(  )

A . B . C . D .
8、已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的部分图象如图所示,则φ的值为(  )

A . B . - C . D . -
9、过点A(﹣1,1),B(1,3)且圆心在x轴上的圆的方程为(  )
A . (x+2)2+y2=10 B . (x﹣2)2+y2=10 C . x2+(y﹣2)2=2 D . x2+(y+2)2=2
10、已知向量 在正方形网格中的位置如图所示,若 ,则λ﹣μ=(  )

A . B . - C . D . -
11、若圆x2+y2﹣2x+4y+1=0上至少有两个点到直线2x+y﹣c=0的距离等于1,则实数c的取值范围为(  )

A . B . C . D .
12、已知直角△ABC,AB=AC=3,P,Q分别为边AB,BC上的点,M,N是平面上两点,若 + =0,( + )• =0, =3 ,且直线MN经过△ABC的外心,则 =(  )
A . B . C . 1 D . 2

二、填空题(共4小题)

1、如图茎叶图中一组数据的中位数是      

2、半径为2的扇形,它的周长等于其所在圆的周长,则此扇形的面积为      
3、若sin(α﹣ )= ,则cos(2α+ )=      
4、已知点P(﹣1,4)及圆C:(x﹣2)2+(y﹣3)2=1.则下列判断正确的序号为      

①点P在圆C内部;

②过点P做直线l,若l将圆C平分,则l的方程为x+3y﹣11=0;

③过点P做直线l与圆C相切,则l的方程为y﹣4=0或3x+4y﹣13=0;

④一束光线从点P出发,经x轴反射到圆C上的最短路程为

三、解答题(共6小题)

1、某企业为了解下属某部门对本企业职工的服务情况,随机访问部分职工,根据被访问职工对该部门的评分,绘制频率分布直方图(如图所示).

组号

分组

频数

频率

第1组

[50,60)

5

0.050

第2组

[60,70)

0.350

第3组

[70,80)

30

第4组

[80,90)

20

0.200

第5组

[90,100]

10

0.100

合计

1.00


(1)求频率分布表中①、②、③位置相应数据,并在答题纸上完成频率分布直方图;
(2)为进一步了解情况,该企业决定在第3,4,5组中用分层抽样抽取5名职工进行座谈,求第3,4,5组中各自抽取的人数;
(3)求该样本平均数
2、如图,在xOy平面上,点A,B在单位圆上,已知A(1,0),∠AOB=θ(0<θ<π)

(1)若点B(﹣ ),求 的值;
(2)若 ,求tanθ的值.
3、已知函数f(x)=sin2x﹣ ,g(x)= sin2x.
(1)求函数f(x)与g(x)图象交点的横坐标;
(2)若函数φ(x)= ﹣f(x)﹣g(x),将函数φ(x)图象上的点纵坐标不变,横坐标扩大为原来的4倍,再将所得函数图象向右平移 个单位,得到函数h(x),求h(x)的单调递增区间.
4、平行四边形ABCD中,对角线AC与BD相交于点O.已知 ,且| |=2, = = .设 = =

(1)用 表示
(2)求 的值.
5、把一颗骰子投掷两次,记第一次出现的点数为a,第二次出现的点数为b.已知方程组
(1)求方程组只有一个解的概率;
(2)若方程组每个解对应平面直角坐标系中点P(x,y),求点P落在第四象限的概率.
6、已知圆C:x2+y2﹣4x+2y+m=0与y轴交于A,B两点,且∠ACB=90°(C为圆心),过点P(0,2)且斜率为k的直线与圆C相交于M,N两点.
(1)求实数m的值;
(2)若|MN|≥4,求k的取值范围;
(3)若向量 与向量 共线(O为坐标原点),求k的值.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2015-2016学年山东省威海市高一下学期期末数学试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;