2022年北师大数学七下期中复习阶梯训练:三角形(基础巩固)
年级: 学科: 类型:复习试卷 来源:91题库
一、单选题(共10小题)
1、如图,为了估计池塘两岸A、B间的距离,小明在池塘的一侧选一个点P,测得PA=14m,PB=10m,则AB间的距离不可能是( )
A . 5m
B . 15m
C . 20m
D . 24m
2、在下列图形中,最具有稳定性的是( )
A .
B .
C .
D .




3、下列四个图中,正确画出△ABC中BC边上的高是( )
A .
B .
C .
D .




4、如图所示,△ABC的边AC上的高是( )
A . 线段AE
B . 线段BA
C . 线段BD
D . 线段DA
5、如图,若
,则
等于( )


A .
B .
C .
D .




6、下列长度的各组线段能组成三角形的是( )
A . 15,10,7
B . 4,5,10
C . 3,8,5
D . 1,1,2
7、下列长度的三条线段能组成三角形的是( )
A . 3,6,9
B . 5,6,8
C . 1,2,4
D . 5,6,15
8、盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,使其窗框不变形
如图所示
, 这样做的数学依据是( )


A . 三角形的稳定性
B . 两点之间线段最短
C . 两点确定一条直线
D . 垂线段最短
9、在下列图形中,线段 AD 的长表示点 A 到直线 BC 的距离的是( )
A .
B .
C .
D .




10、以下列各组长度的线段为边,能构成三角形的是( )
A . 7 、5、12
B . 6、8、15
C . 8、4、3
D . 4、6、5
二、填空题(共6小题)
1、如图,在△ABC中,AD是高,AE是角平分线,∠BAC=50°,∠C=70°,则∠EAD=
2、在
中,
,
,则
为 .




3、有一座小山,如图,要测量小山两端A、B之间的距离.先在平地上取一个可以直接到达点A和点B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,量得DE的长为50 m,则小山两端A、B间的距离为 m.
4、芜湖长江三桥采用耐久型平行钢丝斜拉索技术,这是利用了三角形的
5、如图,在△ABC和△ABD中,已知AC=AD,BC=BD,则能说明△ABC≌△ABD的依据是 .(填字母简写)
6、如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC
DE,则∠DAB等于 .

三、解答题(共6小题)
1、如图,已知AC=FE,BC=DE,点A,D,B,F在一条直线上,AB=FD,证明△ABC≌△FDE.
2、如图,AD平分∠BAC,AB=AC,试判断△ABD≌△ACD。并说明理由.
3、如图,B处在A处南偏西39°方向,C处在A处南偏东20°方向,C处在B处的北偏东78°方向,求
的度数.

4、如图,
中,∠A=30°,∠B=70°,CE平分∠ACB交AB于点E,CD是AB边上的高,求:∠DCE的度数

5、已知:如图,C是AB的中点,AE=BD,∠A=∠B.
求证:∠ACE=∠BCD.
6、如图,已知AB=AC,BD=CE,证明△ABE≌△ACD.
四、综合题(共3小题)
1、如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.
(1)求证:△BCE≌△CAD;
(2)若BE=5,DE=7,则△ACD的周长是 .
2、如图所示,
,
,
,
.




(1)说明
的理由.

(2)求
的度数.

3、如图,BE是△ABC的角平分线,点D是AB边上一点,且∠DEB=∠DBE.
(1)DE与BC平行吗?为什么?
(2)若∠A=40°,∠ADE=60°,求∠C的度数.