湘教版九年级上册初中数学期中复习专题2 反比例函数的图象与性质

年级: 学科: 类型:复习试卷 来源:91题库

一、单选题(共10小题)

1、已知三个点(x1y1),(x2y2),(x3y3)在反比例函数y 的图象上,其中x1x2<0<x3 , 下列结论中正确的是(   )
A . y2y1<0<y3 B . y1y2<0<y3 C . y3<0<y2y1 D . y3<0<y1y2
2、已知点 在反比例函数 的图象上.若 ,则(   )
A . B . C . D .
3、若点 都在反比例函数 的图象上,则 的大小关系是(   )
A . B . C . D .
4、在反比例函数 为常数)上有三点 ,若 ,则 的大小关系为(   )
A . B . C . D .
5、已知反比例函数 ,则下列描述错误的是(    )
A . 图象位于第一,第三象限 B . 图象必经过点 C . 图象不可能与坐标轴相交 D . 的增大而减小
6、已知双曲线 过点(3, )、(1, )、(-2, ),则下列结论正确的是(   )
A . B . C . D .
7、根据反比例函数的性质、联系化学学科中的溶质质量分数的求法以及生活体验等,判定下列有关函数 (a为常数且 )的性质表述中,正确的是(   )

①y随x的增大而增大;②y随x的增大而减小;③ ;④

A . ①③ B . ①④ C . ②③ D . ②④
8、下列说法正确的是(   )

①反比例函数 中自变量x的取值范围是 ;②点 在反比例函数 的图象上;③反比例函数 的图象,在每一个象限内,yx的增大而增大.

A . ①② B . ①③ C . ②③ D . ①②③
9、如图,点A在曲线到 上,点B在双曲线 上, 轴,点Cx轴上一点,连接 ,若 的面积是6,则k的值(    )

A . -6 B . -8 C . -10 D . -12
10、已知点 都在反比例函数 的图象上,且 ,则 的关系是(    )
A . B . C . D .

二、填空题(共5小题)

1、在平面直角坐标系 中,若反比例函数 的图象经过点 和点 ,则 的值为      
2、如图,点A是反比例函数 图象上一点, 轴于点C且与反比例函数 的图象交于点B ,连接OAOB , 若 的面积为6,则       

3、已知点 和点 在反比例函数 的图象上,则 的大小关系是      
4、在平面直角坐标系中,一次函数 与反比例函数 的图象交于 两点,则 的值是      .
5、若点 都在反比例函数 k为常数)的图象上,则 的大小关系为      

三、解答题(共5小题)

1、

如图,点A(1,a)在反比例函数y=(x>0)的图象上,AB垂直于x轴,垂足为点B,将△ABO沿x轴向右平移2个单位长度,得到Rt△DEF,点D落在反比例函数y=(x>0)的图象上.

(1)求点A的坐标;

(2)求k值.

2、丽水苛公司将“丽水山耕”农副产品运往杭州市场进行销售.记汽车行驶时间为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:

v(千米/小时)

75

80

85

90

95

t(小时)

4.00

3.75

3.53

3.33

3.16

(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;

(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市?请说明理由:

(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.

3、

如图,正比例函数 的图象与反比例函数 的图象交于A、B两点,点C在x轴负半轴上,AC=AO,△ACO的面积为12.

(1)求k的值;

(2)根据图象,当 时,写出自变量 的取值范围.

4、如图所示,Rt△PAB的直角顶点P(3,4)在函数y= (x>0)的图象上,顶点A、B在函数y= (x>0,0<t<k)的图象上,PA∥y轴,连接OP,OA,记△OPA的面积为SOPA , △PAB的面积为SPAB , 设w=SOPA﹣SPAB

①求k的值以及w关于t的表达式;  

②若用wmax和wmin分别表示函数w的最大值和最小值,令T=wmax+a2﹣a,其中a为实数,求Tmin

5、如图,点A在反比例函数 的图象上,过点Ay轴的平行线交反比例函数 的图象于点B , 点Cy轴上,若 的面积为8,求k的值.

四、综合题(共6小题)

1、已知反比例函数 (k为常数,且k≠1)
(1)若点A(1,2)在这个函数的图象上,求k的值;
(2)若在这个函数图象的每一支上,y随x的增大而减小,求k的取值范围;
2、在矩形 中, .分别以 所在直线为 轴和 轴,建立如图所示的平面直角坐标系. 是边 上一点,过点 的反比例函数 图象与 边交于点

图片_x0020_100017

(1)请用k表示点E,F的坐标;
(2)若 的面积为 ,求反比例函数的解析式.
3、已知点 在反比例函数 图象上.
(1)如果 ,那么 有怎样的大小关系?
(2)当 ,且 时,求 的值;
4、已知反比例函数 的图象经过点 ,点
(1)求k及m的值.
(2)点 均在反比例函数 的图象上,若 ,比较 的大小关系.
5、如图,在矩形OABC中,OA=3,OC=2,点FAB上(点F不与点AB重合),OAOC分别在x轴,y轴上,过点F的反比例函数 k>0)的图象与BC边交于点E

(1)点E的坐标为      ,点F的坐标为      (用含k的式子表示).
(2)求k为何值时,△EFA的面积最大,最大面积是多少?
6、如图,点A在反比例函数 的图象位于第一象限的分支上,过点A作AB⊥y轴于点B,S△AOB=2.

(1)求该反比例函数的表达式,
(2)若P(x1 , y1)、Q(x2 , y2)是反比例函数 图象上的两点,且x1 x2 , y1 y2 , 指出点P、Q各位于哪个象限,并简要说明理由.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 湘教版九年级上册初中数学期中复习专题2 反比例函数的图象与性质

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;