山西省运城市2020-2021学年七年级下学期数学期中试卷

年级: 学科: 类型:期中考试 来源:91题库

一、选择题(本大题共10个小题,每小题3分,共30分.)(共10小题)

1、若代数式 有意义,则实数x的取值范围是:(    )
A . x≤-4 B . x≤4 C . x≥4 D . x≥-4
2、如图,将 ABCD的一边BC延长至点E,若∠1=80°,则∠A等于(    )

A . 80° B . 120° C . 100° D . 110°
3、已知△ABC三边长分别为a,b,c,且满足 =0,则△ABC是(    )
A . 以c为斜边长的直角三角形 B . 以b为斜边长的直角三角形 C . 以a为斜边长的直角三角形 D . 等腰三角形
4、下列二次根式中,与 可以合并的是(    )
A . B . C . D .
5、直角三角形两直角边长分别为6和8,则此三角形斜边上的中线的长是(    )
A . 10 B . 5 C . 4 D . 3
6、下列二次根式的运算中正确的是(    )
A . B . C . D .
7、若 =2b-4,则(    )
A . b>2 B . b<2 C . b≥2 D . b≤2
8、如图,两条笔直的公路l1 , l2相交于点A,村庄C的村民在公路的旁边建了两个加工厂B和D,已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是(    )

A . 3公里 B . 4公里 C . 5公里 D . 6公里
9、为了研究特殊四边形,刘老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C,B与D两点之间分别用一根橡皮筋拉直固定,课上,刘老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2),观察所得到的四边形,下列结论正确的有(    )

①∠BCA= 45°;②AC的长度变小;③AC= BD;④AC⊥BD

A . 1个 B . 2个 C . 3个 D . 4个
10、如图,在正方形ABCD中,取AD的中点E,连接EB,延长DA至F,使EF=EB,以线段AF为边作正方形AFGH,交AB于点H,则 的值是( )

A . B . C . D .

二、填空题(本大题共5个小题,每小题3分,共15分)(共5小题)

1、化简:=       

2、如图,D,E,F分别为△ABC各边的中点,则图中的平行四边形有      

3、如图,在同一平面内, ABCD与 DCFE的周长相等,且∠BAD=60°,F=110°,则∠DAE的度数为      

4、如图,一只蚂蚁从长为7cm、宽为5cm、高为9cm的长方体纸箱的A点沿纸箱表面爬到B点,那么它所走的最短路线的长是      

5、过△ABC的顶点C画线段CD,使得线段CD与AB边平行且相等,则下列说法:

①若∠BAC=90°,则以A,B,C,D为顶点的四边形是矩形;

②若以A,B,C,D为顶点的四边形是矩形,则∠BAC= 90°;

③若AB=AC= BC,则以A,B,C,D为顶点的四边形是菱形;

④若以A,B,C,D为顶点的四边形是菱形,则AB=AC。

其中正确的说法有      (填序号)

三、解答题(本大题共8个小题,共75分.)(共8小题)

1、(本题共2小题,每小题5分,共10分)

计算:

(1)
(2)
2、如图,在平行四边形ABCD中,AB= ,BC= ,边AD与BC之间的距离为 ,求AB与CD间的距离.

3、如图,∠AOB=90°,OA=45cm,OB=15cm,一个小球从点A出发沿着AO方向匀速前进向点O滚动,一个机器人同时从点B出发,沿直线匀速行走去截小球,在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,求机器人行走的路程BC。

4、如图,点B、E分别在AC,DF上,AF分别交BD,CE于点M、N,∠A=∠F,∠C=∠D。

(1)求证:四边形BCED是平行四边形。
(2)已知DE=3,连接BN,若BN平分∠(DBC,求CN的长。
5、在平面直角坐标系中,已知两点的坐标是P(x1 , y1),Q(x2 , y2),则P,Q两点之间的距离可以用公式d= 计算。阅读以上内容并解答下列问题:
(1)已知点M(2,4),N(-3,-8),则M,N两点之间的距离为      
(2)若点A(3,4),B(-4,3),点O是坐标原点,判断△AOB是什么三角形,并说明理由。
6、在边长为3的正方形ABCD中,点E在边CD所在直线上,连接BE,以BE为边,在BE的下方作正方形BEFG,并连接AG。

(1)如图1,当点E与点D重合时,BG=      ;AG=      
(2)如图2,当点E在线段CD上时,DE=1,求AG的长。
7、综合与实践

如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,垂足为E,点F在AD的延长线上,CF⊥AD,垂足为F。

(1)若∠BAD=60°,判断四边形CEHF的形状并证明。
(2)若CE=4,AE=8,求菱形ABCD的面积。
8、综合与探究

如图,在矩形ABCD中,E是AD的中点,将△ABE沿BE折叠,点A的对应点为点F。

(1)如图1,当点F恰好落在BC边上时,判断四边形ABFE的形状,并说明理由。
(2)如图2,当点F在矩形ABCD内部时,延长BF交DC边于点G。

①试探究线段BG,AB,DG之间的数量关系,并说明理由。

②当G点分CD边的比为1:3时,试探究矩形ABCD的边长AD和AB之间的数量关系,并说明理由。

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 山西省运城市2020-2021学年七年级下学期数学期中试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;