2015-2016学年北京市朝阳区高二上学期期末数学试卷(理科)
年级:高二 学科:数学 类型:期末考试 来源:91题库
一、选择题(共10小题)
1、圆(x﹣2)2+y2=4被直线x=1截得的弦长为( )
A . 1
B .
C . 2
D .


2、抛物线y2=2x上与其焦点距离等于3的点的横坐标是( )
A . 1
B . 2
C .
D .


3、已知p:“x>2”,q:“x2>4”,则p是q的( )
A . 充分而不必要条件
B . 必要而不充分条件
C . 充分必要条件
D . 即不充分也不必要条件
4、已知两条不同的直线a,b,三个不同的平面α,β,γ,下列说法正确的是( )
A . 若a∥α,b⊥a,则b∥α
B . 若a∥α,a∥β,则α∥β
C . 若α⊥β,a⊥α,则a∥β
D . 若α⊥γ,β∥γ,则α⊥β
5、在圆x2+y2=16上任取一点P,过点P作x轴的垂线段PD,D为垂足,当点P在圆上运动时,线段PD的中点M的轨迹方程是( )
A .
B . x2+y2=4
C .
D .



6、若由方程x2﹣y2=0和x2+(y﹣b)2=2所组成的方程组至多有两组不同的实数解,则实数b的取值范围是( )
A .
或
B . b≥2或b≤﹣2
C . ﹣2≤b≤2
D .



7、设O是坐标原点,若直线l:y=x+b(b>0)与圆x2+y2=4交于不同的两点P1、P2 , 且
,则实数b的最大值是( )

A .
B . 2
C .
D .



8、如图,网格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,则该三棱锥的体积为( )
A .
B .
C .
D .




9、已知动圆C位于抛物线x2=4y的内部(x2≤4y),且过该抛物线的顶点,则动圆C的周长的最大值是( )
A . π
B . 2π
C . 4π
D . 16π
10、如图,在平行六面体ABCD﹣A1B1C1D1中,M为AC与BD的交点,若
=
,
=
,
=
.则下列向量中与
相等的向量是( )







A . ﹣
+
+
B .
C .
D . ﹣
﹣
+









二、填空题(共6小题)
1、写出命题p:”任意两个等腰直角三角形都是相似的”的否定¬p: ;判断¬p是 命题.(后一空中填“真”或“假”)
2、已知A(8,0),B(0,6),O(0,0),则△AOB的外接圆的方程是 .
3、中心在原点,焦点在y轴上,虚轴长为
并且离心率为3的双曲线的渐近线方程为 .

4、过椭圆C:
+
=1的右焦点F2的直线与椭圆C相交于A,B两点.若
=
,则点A与左焦点F1的距离|AF1|= .




5、如图为四棱锥P﹣ABCD的表面展开图,四边形ABCD为矩形,
,AD=1.已知顶点P在底面ABCD上的射影为点A,四棱锥的高为
,则在四棱锥P﹣ABCD中,PC与平面ABCD所成角的正切值为 .


6、如图,正方体ABCD﹣A1B1C1D1的棱长为1,N为CD1中点,M为线段BC1上的动点,(M不与B,C1重合)有四个命题:
①CD1⊥平面BMN;
②MN∥平面AB1D1;
③平面AA1CC1⊥平面BMN;
④三棱锥D﹣MNC的体积有最大值.
其中真命题的序号是 .
三、解答题(共3小题)
1、如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=1,AD=2,E为BC的中点,点M,N分别为棱DD1 , A1D1的中点.
(1)求证:平面CMN∥平面A1DE;
(2)求证:平面A1DE⊥平面A1AE.
2、如图,四棱锥P﹣ABCD的底面ABCD为直角梯形,AD‖BC,且
,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E为AD的中点,△PAD为等边三角形,M是棱PC上的一点,设
(M与C不重合).


(1)求证:CD⊥DP;
(2)若PA∥平面BME,求k的值;
(3)若二面角M﹣BE﹣A的平面角为150°,求k的值.
3、已知椭圆W:
,过原点O作直线l1交椭圆W于A,B两点,P为椭圆上异于A,B的动点,连接PA,PB,设直线PA,PB的斜率分别为k1 , k2(k1 , k2≠0),过O作直线PA,PB的平行线l2 , l3 , 分别交椭圆W于C,D和E,F.

(1)若A,B分别为椭圆W的左、右顶点,是否存在点P,使∠APB=90°?说明理由.
(2)求k1•k2的值;
(3)求|CD|2+|EF|2的值.