四川省内江市隆昌知行中学2020-2021学年八年级上学期数学期中试卷

年级: 学科: 类型:期中考试 来源:91题库

一、单选题(共12小题)

1、4的平方根是(   )
A .    ±2 B . 2 C . ﹣2 D . 16
2、如图, ,则 等于(    )

图片_x0020_100006

A . 90° B . 75° C . 70° D . 60°
3、下列计算正确的是(  )
A . B . C . D .
4、在下列实数 ,0.31, ,1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( )
A . 1 B . 2 C . 3 D . 4
5、下列计算正确的是(    )
A . B . C . D .
6、估计 的值在( )
A . 3和4之间 B . 4和5之间 C . 5和6之间 D . 6和7之间
7、已知 ,则 等于(   )
A . B . -1 C . 17 D . 72
8、下列式子变形是因式分解的是(    )
A . x2-2x-3=x(x-2)-3 B . x2-4y2=(x+4y)(x-4y) C . D .
9、如图所示,下列各选项中与△ABC一定全等的三角形是(   )

图片_x0020_100001

A . 图片_x0020_100002 B . 图片_x0020_100003 C . 图片_x0020_100004 D . 图片_x0020_100005
10、如图,AD平分 ,BD平分 于E, 交ED的延长线于点F,给出以下三个结论:① ;② ;③ ,其中正确的结论共有(    )

图片_x0020_100007

A . 0个 B . 3个 C . 2个 D . 1个
11、已知a2+a﹣3=0,那么a2(a+4)的值是(    )
A . ﹣12 B . ﹣18 C . ﹣15 D . 9
12、如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”,(如8=32﹣12 , 16=52﹣32 , 24=72﹣52 , 即8,16,24均为“和谐数”),若将这一列和谐数8,16,24……由小到大依次记为a1 , a2 , a3 , ……,an , 则a1+a2+a3+…+an=(   )
A . 4n2+4 B . 4n+4 C . 4n2+4n D . 4n2

二、填空题(共4小题)

1、等腰ΔABC的腰AB边上的中线CD,把ΔABC的周长分成12和15两部分,则底边BC长为      .
2、已知m、n均为正整数,且2m+3n=5,则 =      
3、若 是关于x的完全平方式,则常数       
4、如果式子 )成立,则有 .请按此性质化简,使被开方数不含完全平方的因数: =       =      

三、解答题(共6小题)

1、如图,在四边形ABCD中,AB∥CD,∠1=∠2,DB=DC.

图片_x0020_1579340881

(1)求证:△ABD≌△EDC;
(2)若∠A=135°,∠BDC=30°,求∠BCE的度数.
2、计算:
(1)
(2)
3、因式分解
(1)
(2)
(3)
4、化简,再求值: ,其中 满足
5、已知 ,求:
(1) 的值;
(2) 的值;
(3)a-b的值.
6、如图①, 已知△ABC中, ∠BAC=90°, AB="AC," AE是过A的一条直线, 且B、C在AE的异侧, BD⊥AE于D, CE⊥AE于E.

图片_x0020_100010

(1)求证: BD=DE+CE.
(2)若直线AE绕A点旋转到图②位置时(BD<CE), 其余条件不变, 问BD与DE、CE的数量关系如何? 请给予证明;
(3)若直线AE绕A点旋转到图③位置时(BD>CE), 其余条件不变, 问BD与DE、CE的数量关系如何? 请直接写出结果, 不需证明.
(4)根据以上的讨论,请用简洁的语言表达BD与DE,CE的数量关系.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 四川省内江市隆昌知行中学2020-2021学年八年级上学期数学期中试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;