陕西省汉中市城固县2020届九年级上学期数学期中考试试卷
年级: 学科: 类型:期中考试 来源:91题库
一、选择题(共10小题)
1、如图,菱形中,对角线AC、BD交于点O , E为AD边中点,菱形ABCD的周长为28,则OE的长等于( )
A . 3.5
B . 4
C . 7
D . 14
2、下列方程中,属于一元二次方程的是( )
A . x+2y=1
B . ax2+bx+c=0
C . 3x+
=4
D . x2﹣2=0

3、下列结论中,正确的是( )
A . 四边相等的四边形是正方形
B . 对角线相等的菱形是正方形
C . 正方形两条对角线相等,但不互相垂直平分
D . 矩形、菱形、正方形都具有“对角线相等”的性质
4、已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有2个,黑球有n个.随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.经过大量重复试验发现摸出白球的频率稳定在0.4附近,则n的值为( )
A . 2
B . 3
C . 4
D . 5
5、如果两个相似三角形对应边之比是
,那么它们的对应中线之比是( )

A . 1:3
B . 1:4
C . 1:6
D . 1:9
6、已知关于
的方程
,下列说法正确的是( )


A . 当
时,方程无解
B . 当
时,方程有一个实数解
C . 当
时,方程有两个相等的实数解
D . 当
时,方程总有两个不相等的实数解




7、如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A的坐标为(1,0),则E点的坐标为( )
A . (2,0)
B . (1,1)
C . (
,
)
D . (2,2)


8、共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三连个月投放单车数量的月平均增长率为x,则所列方程正确的是( )
A . 1000(1+x)2=440
B . 1000(1+x)2=1000
C . 1000(1+2x)=1000+440
D . 1000(1+x)2=1000+440
9、如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH┴AF与点H,那么CH的长是( )
A .
B .
C .
D .




10、如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,若点G是AE中点且∠AOG=30°,则下列结论正确的个数为( )
(1)△OGE是等边三角形;(2)DC=3OG;(3)OG=
BC;(4)S△AOE=
S矩形ABCD
(1)△OGE是等边三角形;(2)DC=3OG;(3)OG=


A . 1个
B . 2个
C . 3个
D . 4个
二、填空题(共4小题)
1、在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为 粒.
2、线段AB长为10cm , 点C是AB的黄金分割点,则AC的长为 (结果精确到0.1cm).
3、如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.你能利用小明测量的数据算出电线杆AB的高吗?
4、如图,菱形ABCD中,AB=2,∠A=120°,点E、F分别在边AB、AD上且AE=DF,则△AEF面积的最大值为 .
三、解答题(共11小题)
1、端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为A)、兴文石海(记为B)、夕佳山民居(记为C)、李庄古镇(记为D)的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点都被选中的可能性相同.
(1)小明选择去蜀南竹海旅游的概率为 .
(2)用树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率.
2、已知关于x的方程
.

(1)当该方程的一个根为1时,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
3、如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.
求证:四边形OCED是菱形.
4、某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?
5、已知:△ABC中,∠A=36°,AB=AC,用尺规求作一条过点B的直线,使得截出的一个三角形与△ABC相似.(保留作图痕迹,不写作法)
6、解方程:3(x-5)2=2(5-x)
7、先化简:(
)÷
,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算.


8、如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=1米,EF=0.5米,测点D到地面的距离DG=3米,到旗杆的水平距离DC=40米,求旗杆的高度.
9、太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.
请你根据以上数据,计算舍利塔的高度AB.
10、如图,在△ABC中.AB=AC,AD⊥BC于D,作DE⊥AC于E,F是AB中点,连EF交AD于点G.
(1)求证:AD2=AB•AE;
(2)若AB=3,AE=2,求
的值.

11、已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=
AC

(1)求过点A,B的直线的函数表达式;
(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;
(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.