天津市滨海新区2019-2020学年九年级上学期数学期中试卷

年级: 学科: 类型:期中考试 来源:91题库

一、单选题(共12小题)

1、将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为(   )
A . y=(x+1)2+4 B . y=(x﹣1)2+4 C . y=(x+1)2+2 D . y=(x﹣1)2+2
2、如图, 的直径, 上两点,若 ,则 的大小为(    ).

A . 60° B . 50° C . 40° D . 20°
3、如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=1,如果关于x的方程ax2+bx﹣8=0(a≠0)的一个根为4,那么该方程的另一个根为(   )

A . ﹣4 B . ﹣2 C . 1 D . 3
4、如图,AB是⊙O的弦,OC⊥AB于点H,若∠AOC=60°,OH=1,则弦AB的长为(  )

A . 2 B . C . 2 D . 4
5、下列图案中是中心对称图形但不是轴对称图形的是(   )
A . B . C . D .
6、二次函数y=(x+1)2x轴交点坐标为(  )
A . (﹣1,0) B . (1,0) C . (0,﹣1) D . (0,1)
7、如图,在等腰直角△ABC 中,∠C=90°,将△ABC 绕顶点 A 逆时针旋转 80°后得△AB′C′,则∠CAB′的度数为(        )

A . 45° B . 80° C . 125° D . 130°
8、如图,在矩形ABCD中,AD=4,DC=3,将△ADC绕点A按逆时针旋转到△AEF(A、B、E在同一直线上),连接CF,则CF的长为( )

A . 5 B . 3 C . 4 D . 5
9、如图,在△ABO中,AB⊥OB,OB= ,OB在x轴正半轴上,∠AOB=30°,把△ABO绕点O顺时针旋转150°后得到△A1B1O,则点A的对应点A1的坐标为( )

A . (﹣ ,﹣1) B . (﹣1,﹣2) C . (﹣2,﹣1) D . (﹣1,﹣ )
10、如图,四边形ABCD是⊙O的内接四边形,AB=AD,若∠C=68°,则∠ABD的度数为( )

A . 34° B . 56° C . 68° D . 112°
11、已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应值如下表所示:

x

……

﹣1

0

1

2

3

……

y

……

﹣2

3

6

7

6

……

下列说法错误的是( )

A . 函数图象开口向下 B . 抛物线的对称轴是直线x=2 C . b2﹣4ac>0 D . 当x≥1时,y≥6
12、已知二次函数y=ax2+bx+c的图象如图所示,对称轴为x=1,经过点(-1,0),有下列结论:①abc<0;②a+cb;③3a+c=0;④a+bmam+b)(其中m≠1)其中正确的结论有(  )

图片_x0020_929329923

A . 1个 B . 2个 C . 3个 D . 4个

二、填空题(共6小题)

1、如图,在Rt△ABC中,C为直角顶点,∠ABC=20°,O为斜边的中点,将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为      

2、把抛物线y=﹣2x2向左平移3个单位长度所得图象的解析式是      .
3、在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为      .
4、若点 与点 关于原点对称,则       .
5、如图⊙I是△ABC的内切圆,与AB、BC、CA分别相切于点D、E、F,∠DEF=50°,则∠A=      .

图片_x0020_1182740942

6、如图,AB是圆O的弦,AB=20 ,点C是圆O上的一个动点,且∠ACB=45°,若点MN分别是ABBC的中点,则MN的最大值是      

图片_x0020_1188988145

三、解答题(共7小题)

1、如图,抛物线yx2+bx﹣3过点A(1,0),直线AD交抛物线于点D , 点D的横坐标为﹣2,点P是线段AD上的动点.

(1)b      ,抛物线的顶点坐标为      
(2)求直线AD的解析式;
(3)过点P的直线垂直于x轴,交抛物线于点Q , 连接AQDQ , 当△ADQ的面积等于△ABD的面积的一半时,求点Q的坐标.
2、四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=3,AB=7,

求:

(1)指出旋转中心和旋转角度;
(2)求DE的长度;
(3)BE与DF的位置关系如何?请说明理由。
3、如图,抛物线y=x2+bx+c与x轴交于A,C两点,与y轴交于B点,抛物线的顶点为点D,已知点A的坐标为(﹣1,0),点B的坐标为(0,﹣3).

(1)求抛物线的解析式及顶点D的坐标.
(2)求△ACD的面积.
4、如图,△ABC内接于⊙O,BD为⊙O的直径,∠BAC=120°、OA⊥BC、若AB=4.

图片_x0020_100028  

(1)求证:四边形OACD为菱形.
(2)求AD的长.
5、如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点HDO及延长线分别交ACBC于点G、.

图片_x0020_211373462

(1)求证:DF垂直平分AC
(2)求证:FCCE
(3)若弦AD=5cmAC=8cm , 求⊙O的半径.
6、某商品的进价为每件20元,售价为每件30元,每月可卖出180件,如果该商品计划涨价销售,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数)时,月销售利润为y元.
(1)分析数量关系填表:

每台售价(元)

30

31

32

……

30+x

月销售量(件)

180

170

160

……

      

(2)求y与x之间的函数解析式和x的取值范围
(3)当售价x(元/件)定为多少时,商场每月销售这种商品所获得的利润y(元)最大?最大利润是多少?
7、如图1,在平面直角坐标系中,点A(﹣ ,0),B( ,0),C(0, ).D,E分别是线段AC和CB上的点,CD=CE.将△CDE绕点C逆时针旋转一个角度α.

图片_x0020_100031  

(1)若0°<α<90°,在旋转过程中当点A,D,E在同一直线上时,连接AD,BE,如图2.求证:AD=BE,且AD⊥BE
(2)若0°<α<360°,D,E恰好是线段AC和CB上的中点,在旋转过程中,当DE∥AC时,求α的值及点E的坐标.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 天津市滨海新区2019-2020学年九年级上学期数学期中试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;