湖北省恩施土家族苗族自治州2021届九年级上学期数学期末考试试卷

年级: 学科: 类型:期末考试 来源:91题库

一、单选题(共12小题)

1、方程x2=﹣x的解是(  )


A . x=1  B . x=0  C . x1=﹣1或x2=0 D . x1=1或x2=0
2、

如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:

①abc>0

②4a+2b+c>0

③4ac﹣b2<8a

<a<

⑤b>c.

其中含所有正确结论的选项是(  )

A . ①③ B . ①③④ C . ②④⑤ D . ①③④⑤
3、下列图形是中心对称图形而不是轴对称图形的是(   )
A . B . C . D .
4、对于二次函数 ,下列说法正确的是(   )
A . 时, 的增大而增大 B . 时, 有最大值 C . 图象的顶点坐标为 D . 图象与 轴有两个交点
5、如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和  的长分别为(   )

A . 2, B . 2  ,π C . D . 2
6、关于 的方程 有实数根,则 满足(    )
A . B . C . D .
7、下列事件是必然事件的是(     )
A . 抛掷一枚硬币四次,有两次正面朝上 B . 打开电视频道,正在播放《在线体育》 C . 射击运动员射击一次,命中十环 D . 方程x2﹣2x﹣1=0必有实数根
8、如图,在 中, 是直径, 是弦, 于点M,若 ,则 的长为(   )

图片_x0020_1471997057

A . B . C . D .
9、从 三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率(   )
A . B . C . D .
10、如图,在长为70 m,宽为40 m的长方形花园中,欲修宽度相等的观赏路(阴影部分所示),要使观赏路面积占总面积的 ,则路宽x应满足的方程是( )

A . (40-x)(70-x)=2450 B . (40-x)(70-x)=350 C . (40-2x)(70-3x)=2450 D . (40-2x)(70-3x)=350
11、如图,已知 ,以 为直径的圆交 于点D,过点D的 的切线交 于点E.若 ,则 的半径是(   )

A . B . C . D .
12、如图,正方形 的两边 分别在x轴、y轴上,点 在边 上,以C为中心,把 旋转 ,则旋转后点D的对应点 的坐标是(   ).

图片_x0020_1183544920

A . B . C . D .

二、填空题(共4小题)

1、

二次函数的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为       .


2、在一个不透明的盒子中装有16个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是 ,则黄球的个数为      
3、某同学利用半径为40cm的扇形纸片制作成一个圆锥形纸帽(接缝忽略不计),若圆锥底面半径为10cm,那么这个圆锥的侧面积是      .
4、如图,在矩形 中,已知 ,矩形在直线上绕其右下角的顶点B向右旋转 至图①位置,再绕右下角的顶点继续向右旋转 至图②位置,···,以此类推,这样连续旋转 次后,顶点A在整个旋转过程中所经过的路程之和是      .

图片_x0020_1088787944

三、解答题(共8小题)

1、4件同型号的产品中,有1件不合格品和3件合格品.

(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;

(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;

(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?

2、山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
3、用适当的方法解方程:
(1)
(2) .
4、如图,E是正方形 边上一点,以点A为中心把 顺时针旋转 .

图片_x0020_100022

(1)在图中画出旋转后的图形;
(2)若旋转后E点的对应点记为M,点F在 上,且 ,连接 .

①求证:

②若正方形的边长为6, ,求 .

5、如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB上一点O为圆心作⊙O,使⊙O经过点A和点D.

(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若AC=3,∠B=30°,设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧 所围成的阴影部分的面积(结果保留根号和 ).
6、某校九(1)班数学兴趣小组经过市场调查,整理出某种商品在第 天的售价与销量的相关信息如下表:

时间x(天)

售价(元/件)

每天销量(件)

已知该商品的进价为每件 元,设销售该商品的每天利润为y元.

(1)求y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于 元?
7、如图, 的直径, ,过点 交圆于点H,点C是弧 上异于点 的动点,过点C作 ,垂足分别为 ,过点C的直线交 的延长线于点G,且 .

图片_x0020_749769688

(1)求证: 是O的切线;
(2)求 的长;
(3)过点C作 于点F,若 ,求 的长.
8、如图,抛物线 y=﹣x2﹣2x+3 的图象与 x 轴交于 A、B 两点(点 A 在点 B 的左边),与 y轴交于点 C,点 D 为抛物线的顶点.

图片_x0020_100028

(1)求点 A、B、C 的坐标;
(2)点 M(m,0)为线段 AB 上一点(点 M 不与点 A、B 重合),过点 M 作 x 轴的垂线,与直线 AC 交于点 E,与抛物线交于点 P,过点 P 作 PQ∥AB 交抛物线于点 Q,过点 Q 作 QN⊥x 轴于点 N,可得矩形 PQNM.如图,点 P 在点 Q 左边,试用含 m 的式子表示矩形 PQNM 的周长;
(3)当矩形 PQNM 的周长最大时,m 的值是多少?并求出此时的△AEM 的面积;
(4)在(3)的条件下,当矩形 PMNQ 的周长最大时,连接 DQ,过抛物线上一点 F 作 y 轴的平行线,与直线 AC 交于点 G(点 G 在点 F 的上方).若 FG=2 DQ,求点 F 的坐标.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 湖北省恩施土家族苗族自治州2021届九年级上学期数学期末考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;