湖北省仙桃市2018-2019学年八年级下学期数学期末考试试卷
年级: 学科: 类型:期末考试 来源:91题库
一、选择题(共10小题)
1、如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E,F,连接PB,PD.若AE=2,PF=8.则图中阴影部分的面积为( )
A . 10
B . 12
C . 16
D . 18
2、如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( )
A . 15
B . 18
C . 21
D . 24
3、如表是某公司员工月收入的资料.
月收入/元 | 45000 | 18000 | 10000 | 5500 | 5000 | 3400 | 3300 | 1000 |
人数 | 1 | 1 | 1 | 3 | 6 | 1 | 11 | 1 |
能够反映该公司全体员工月收入水平的统计量是( )
A . 平均数和众数
B . 平均数和中位数
C . 中位数和众数
D . 平均数和方差
4、如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:
①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC.其中正确结论的个数为( )
A . 1
B . 2
C . 3
D . 4
5、已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是( )
A . 经过第一、二、四象限
B . 与x轴交于(1,0)
C . 与y轴交于(0,1)
D . y随x的增大而减小
6、下列二次根式中,是最简二次根式的是( )
A .
B .
C .
D .




7、均匀地向一个容器注水,最后将容器注满
在注水过程中,水的高度h随时间t的变化规律如图所示,这个容器的形状可能是




A .
B .
C .
D .




8、下列长度的三条线段能组成直角三角形的是( )
A . 3,4,5
B . 2,3,4
C . 4,6,7
D . 5,11,12
9、估计5
﹣
的值应在( )


A . 4和5之间
B . 5和6之间
C . 6和7之间
D . 7和8之间
10、若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是( )
A . 4
B . 5
C . 6
D . 7
二、填空题(共8小题)
1、已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD= 度.
2、函数y=
的自变量x的取值范围是 .

3、观察下列各式:
,
,
,
……
请利用你所发现的规律,
计算 +
+
+…+
,其结果为 .
4、如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为 .(写出一个即可)
5、如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为 .
6、如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组
的解集为 .

7、小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩 分.
8、在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S矩形ABCD=3S△PAB , 则PA+PB的最小值为 .
三、解答题(共7小题)
1、文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.
(1)甲乙两种图书的售价分别为每本多少元?
(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)
2、计算:
(1)2
﹣6
+3
;



(2)(1+
)(
﹣
)+(
﹣
)×
.






3、如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.
(1)求证:四边形ADEF为平行四边形;
(2)当点D为AB中点时,判断▱ADEF的形状;
(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.
4、如图,已知点A(6,0),B(8,5),将线段OA平移至CB,点D(x,0)在x轴正半轴上(不与点A重合),连接OC,AB,CD,BD.
(1)求对角线AC的长;
(2)△ODC与△ABD的面积分别记为S1 , S2 , 设S=S1﹣S2 , 求S关于x的函数解析式,并探究是否存在点D使S与△DBC的面积相等,如果存在,请求出x的值(或取值范围);如果不存在,请说明理由.
5、在菱形ABCD中,∠ABC=60°,P是射线BD上一动点,以AP为边向右侧作等边△APE,连接CE.
(1)如图1,当点P在菱形ABCD内部时,则BP与CE的数量关系是 ,CE与AD的位置关系是 .
(2)如图2,当点P在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;
(3)如图2,连接BE,若AB=2
,BE=2
,求AP的长.


6、如图,在Rt△ABC中,∠C=90°.
(1)求作:△ABC的一条中位线,与AB交于D点,与BC交于E点.(保留作图痕迹,不写作法)
(2)若AC=6,AB=10,连结CD,则DE= ,CD=_ .
7、为了参加“仙桃市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班 86,85,77,92,85;八(2)班 79,85,92,85,89.通过数据分析,列表如下:
班级 |
平均分 |
中位数 |
众数 |
方差 |
八(1) |
85 |
b |
85 |
d |
八(2) |
a |
85 |
c |
19.2 |
(1)直接写出表中a,b,c,d的值;
(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.