广西南宁市2020-2021学年八年级上学期数学期末考试试卷

年级: 学科: 类型:期末考试 来源:91题库

一、单选题(共12小题)

1、若(ambn3=a9b15 , 则m、n的值分别为(   )
A . 9;5 B . 3;5 C . 5;3 D . 6;12
2、某种冠状病毒的直径是120纳米,1纳米= 米,则这种冠状病毒的直径是(   )厘米.
A . B . C . D .
3、有 2cm 和 3cm 的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形, 下列长度的小棒不符合要求的是( ).
A . 2cm B . 3cm C . 4cm D . 5cm
4、下列图形中,可以看作是轴对称图形的是(   )
A . 图片_x0020_100001 B . 图片_x0020_100002 C . 图片_x0020_100003 D . 图片_x0020_100004
5、下列化简正确的是(   )
A . B . C . D .
6、点P(x,y)关于直线x=1的对称点P1坐标是(   )
A . B . C . D .
7、如图所示, 的角平分线, 交AB于点E, ,则 的度数是(   )

  图片_x0020_100005

A . B . C . D .
8、下列计算正确的是(   )
A . x2+x=x3 B . x2﹣2x2=x2 C . 2x•3x2=6x2 D . x(x2﹣1)=x3﹣x
9、如图,在 中, ,高BE和CH的交点为O,则∠BOC=(   )

A . 80° B . 120° C . 100° D . 150°
10、如图,在 中, ,若 的垂直平分线,则 的周长为(   )

图片_x0020_100007

A . B . C . D .
11、一个容器盛满酒精,第一次倒出10升后,用水加满,第二次倒出6升后,再用水加满,这时容器内的酒精与水的体积之比为7:13,则这个容器的容积为(   )
A . 18升 B . 20升 C . 24升 D . 30升
12、如图,在△ABC中,∠BAC和∠ABC的平分线AE,BF相交于点O,AE交BC于E,BF交AC于F,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+ ∠C;②当∠C=60°时,AF+BE=AB; ③若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的是(   )

图片_x0020_100008

A . ①② B . ②③ C . ①②③ D . ①③

二、填空题(共6小题)

1、如图,已知△ABC≌△ADE,若AB=9,AC=4,则BE的值为      .

2、在实数范围内分解因式:xy2﹣4x=      .
3、若△ABC中,∠ACB是钝角,AD是BC边上的高,若AD=2,BD=3.CD=1,则△ABC的面积等于      
4、已知一个n边形的内角和等于1980°,则n=      
5、当       时,分式 有意义.
6、我国宋朝数学家杨辉在他的著作 解:九章算法 中提出“杨辉三角” 如图 ,此图揭示了 为非负整数 展开式的项数及各项系数的有关规律.

图片_x0020_1155585931

例如: ,它只有一项,系数为1;系数和为1;

,它有两项,系数分别为1,1,系数和为2;

,它有三项,系数分别为1,2,1,系数和为4;

,它有四项,系数分别为1,3,3,1,系数和为8;

的展开式共有      项,系数和为      .

三、解答题(共8小题)

1、如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.

(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;
(2)在直线l上找一点P(在答题纸上图中标出),使PB+PC的长最短,这个最短长度的平方值是      
2、已知:如图,点A,B,C,D在同一直线上,AE∥DF,BF∥EC,AB=CD.求证:AE=DF.

 

3、疫情防控形势下,人们在外出时都应戴上口罩以保护自己免受新型冠状病毒感染.某药店用4000元购进若干包一次性医用口罩,很快售完,该店又用 元钱购进第二批这种口罩,所进的包数比第一批多 ,每包口罩的进价比第一批每包口罩的进价多 元,请解答下列问题:

图片_x0020_100021

(1)求购进的第一批医用口罩有多少包;
(2)政府采取措施,在这两批医用口罩的销售中,售价保持了一致.若售完这两批口罩的总利润不高于 元钱,那么药店销售该口罩每包的最高售价是多少元?
4、计算:(2a﹣3b)2﹣(3a﹣2b)2.
5、先化简: ,再从﹣1≤x≤2的整数中选取一个你喜欢的x的值代入求值.
6、图 是一个长为 ,宽为 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图的形状拼成一个正方形.

图片_x0020_100018   图片_x0020_1387586822

(1)请求图b中的大正方形的边长为      ,阴影部分正方形的边长为      
(2)请用两种不同的方法求图中阴影部分的面积;
(3)观察图b,请写出 这三个代数式之间的等量关系;
(4)若 ,求 的值.
7、如图,在 中, ,点D在边BC上运动(点D不与点 重合),连接AD,作 ,DE交边AC于点E.

(1)当 时,              
(2)当DC等于多少时, ,请说明理由;
(3)在点D的运动过程中, 的形状可以是等腰三角形吗?若可以,请求出 的度数;若不可以,请说明理由.
8、已知点C是∠MAN平分线上一点,∠BCD的两边CB、CD分别与射线AM、AN相交于B,D两点,且∠ABC+∠ADC=180°.过点C作CE⊥AB,垂足为E.

(1)如图1,当点E在线段AB上时,求证:BC=DC;
(2)如图2,当点E在线段AB的延长线上时,探究线段AB、AD与BE之间的等量关系;
(3)如图3,在(2)的条件下,若∠MAN=60°,连接BD,作∠ABD的平分线BF交AD于点F,交AC于点O,连接DO并延长交AB于点G.若BG=1,DF=2,求线段DB的长.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 广西南宁市2020-2021学年八年级上学期数学期末考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;