辽宁省抚顺市新抚区2021届九年级上学期数学期末考试试卷

年级: 学科: 类型:期末考试 来源:91题库

一、单选题(共10小题)

1、一元二次方程x(x+5)=0的根是(   )
A . x1=0,x2=5 B . x1=0,x2=﹣5 C . x1=0,x2= D . x1=0,x2=﹣
2、下列方程中,是一元二次方程的为(   )
A . B . C . D .
3、点(-2,3)关于原点对称的点的坐标是(  )
A . (2,3) B . (-2,-3) C . (2,-3) D . (-3,2)
4、下列事件中,是必然事件的是(   )
A . 汽车走过一个红绿灯路口时,前方正好是绿灯 B . 任意买一张电影票,座位号是3的倍数 C . 掷一枚质地均匀的硬币,正面向上 D . 从一个只有白球的盒子里摸出一个球是白球
5、一个不透明的盒子中装有2个白球,6个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是(   )
A . B . C . D .
6、⊙O为△ABC的内切圆,那么点O是△ABC的(   )
A . 三条中线交点 B . 三条高的交点 C . 三条边的垂直平分线的交点 D . 三条角平分线交点
7、小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是(   )
A . B . C . D .
8、如图,△OCD是由△OAB绕点O顺时针旋转40°后得到的图形,若∠AOD=90°,则∠BOC的度数是(   )

图片_x0020_100003

A . B . 10° C . 15° D . 20°
9、如图,四边形ABCD为⊙O的内接正四边形,△AEF为⊙O的内接正三角形,若DF恰好是同圆的一个内接正n边形的一边,则n的值为(   )

图片_x0020_100004

A . 8 B . 10 C . 12 D . 15
10、如图,直线 与x轴和y轴分别相交于A、B两点,平行于直线 的直线 从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴和y轴分别相交于C、D两点,运动时间为t秒 .以 为斜边作等腰直角 (E、O两点分别在 两侧),若 的重合部分的面积为S,则S与t之间的函数关系的图象大致是(   )

 

A . B . C . D .

二、填空题(共8小题)

1、在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:

摸球实验次数

100

1000

5000

10000

50000

100000

“摸出黑球”的次数

36

387

2019

4009

19970

40008

“摸出黑球”的频率

(结果保留小数点后三位)

0.360

0.387

0.404

0.401

0.399

0.400

根据试验所得数据,估计“摸出黑球”的概率是      (结果保留小数点后一位).

2、圆锥的底面半径为3cm , 母线长为5cm , 则它的侧面积为      
3、若关于 的方程 有两个不相等的实数根,则实数 的取值范围是      .
4、点A,B,C在⊙O上,∠AOB=100°,∠BOC=40°,则∠ABC=      .
5、已知二次函数 ,当x≥1时,y随x的增大而增大,则m的取值范围是      .
6、一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是      .

图片_x0020_151847981

7、奥运五环是奥利匹克的标志,是由皮埃尔·德·顾拜旦设计的,图案中包含了圆和圆的位置关系有      .

图片_x0020_100014

8、如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),弧AA1是以点B为圆心,BA为半径的圆弧;弧A1A2是以点O为圆心,OA1为半径的圆弧;弧A2A3是以点C为圆心,CA2为半径的圆弧;弧A3A4是以点A为圆心,AA3为半径的圆弧,继续以点B,O,C,A为圆心,按上述作法得到的曲线AA1A2A3A4A5…,称为正方形的“渐开线”,则弧A2019A2020的长是      .

图片_x0020_100015

三、解答题(共8小题)

1、如图,△ABC的三个顶点的坐标分别为A(-2,3),B(-4,1),C(-1,2).

图片_x0020_100016

(1)①作出△ABC以O为旋转中心,顺时针旋转90°的△A1B1C1
②作出△ABC关于原点O成中心对称的△A2B2C2 , 写出B2和C2的坐标;
(2)写出△ABC绕原点O顺时针旋转一周扫过的图形面积.
2、小明代表学校参加“我和我的祖国”主题宣传教育活动,该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用A,B,C表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用D,E表示),参加人员在每个阶段各随机抽取一个项目完成.请用画树状图或列表的方法,求小明恰好抽中B,D两个项目的概率.
3、如图,AB是⊙O的直径,点C为⊙O上一点,CF为⊙O的切线,OE⊥AB于点O,分别交AC,CF于D,F两点.

图片_x0020_100018

(1)求证:ED=EC;
(2)若EC=1,∠A=30°,求图中阴影部分的面积.
4、在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.
(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是      .
(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是奇数的概率.
5、如图,在△ABC中,∠ACB=90°,CA=CB,点O在△ABC的内部,⊙O经过B,C两点,交AB于点D,连接CO并延长交AB于点G,以GD,GC为邻边作平行四边形GDEC.

图片_x0020_100020

(1)判断DE与⊙O的位置关系,并说明理由;
(2)若DE=17,CE=13,求⊙O的半径.
6、某服装批发市场销售一种衬衫,衬衫每件进货价为50元.规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:

售价x(元/件)

60

65

70

销售量y(件)

1400

1300

1200

(1)求出y与x之间的函数表达式;(不需要求自变量x的取值范围)
(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?
(3)物价部门规定,该衬衫的每件利润不允许高于进货价的50%,设销售这种衬衫每月的总利润为w(元),求w与x之间的函数关系式,x为多少时,w有最大值,最大利润是多少?
7、如图①,C为线段BD上的一点,BC≠CD,分别以BC,BD为边在BD的上方作等边△ABC和等边△CDE,连接AE,F,G,H分别是BC,AE,CD的中点,连接FG,GH,FH.

图片_x0020_100022

(1)△FGH的形状是;
(2)将图①中的△CDE绕点C顺时针旋转,其他条件不变,(1)的结论是否成立?结合图②说明理由;
(3)若BC= ,CD=4,将△CDE绕点C旋转一周,当A,E,D三点共线时,直接写出△FGH的周长.
8、如图,抛物线 经过A(-3,0),B(1,0)两点,与 轴交于点C,P为 轴上的动点,连接AP,以AP为对角线作正方形AMPN.

图片_x0020_100026

(1)求抛物线的解析式;
(2)当正方形AMPN与△AOP面积之比为5∶2时,求点P的坐标;
(3)当正方形AMPN有两个顶点在抛物线上时,直接写出点P的坐标.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 辽宁省抚顺市新抚区2021届九年级上学期数学期末考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;