浙江省台州市2021届九年级上学期数学期末考试试卷

年级: 学科: 类型:期末考试 来源:91题库

一、单选题(共10小题)

1、

如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的(  )

 

A . = B . = C . = D . =
2、函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是(   )
A . y=﹣2(x﹣1)2+2 B . y=﹣2(x﹣1)2﹣2 C . y=﹣2(x+1)2+2 D . y=﹣2(x+1)2﹣2
3、如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=25°,则∠CAD的度数为(   )

A . 25° B . 50° C . 65° D . 75°
4、抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是(    )
A . 小于 B . 等于 C . 大于 D . 无法确定
5、在 中, ,那么 的值等于(   )
A . B . C . D .
6、若反比例函数 的图象经过 ,则这个函数的图象一定过(   )
A . B . C . D .
7、如图1,在Rt△ABC中,∠B=90°,∠ACB=45°,延长BC到D,使CD=AC,则tan22.5°=(   )

图片_x0020_100003

A . B . C . D .
8、如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线AD的延长线交于点E,若点D是弧AC的中点,且∠ABC=70°,则∠AEC等于(  )

图片_x0020_100004

A . 80° B . 75° C . 70° D . 65°
9、如图,在平面直角坐标系中,Rt△ABC的顶点,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数(k>0,x>0)的图象经过AC的中点D,则k的值为(   )

图片_x0020_100005

A . 8 B . 5 C . 6 D . 4
10、对于实数a、b,定义运算“★”:a★b= ,关于x的方程(2x+1)★(2x-3)=t恰好有两个不相等的实数根,则t的取值范围是(   )
A . t< B . t> C . t< D . t>

二、填空题(共6小题)

1、二次函数y=x2﹣2x+3图象的顶点坐标为      
2、用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为      .
3、一个盒中装着大小、外形一模一样的x颗白色弹珠和y颗黑色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率是 .如果再往盒中放进12颗同样的白色弹珠,取得白色弹珠的概率是 ,则原来盒中有白色弹珠      颗.
4、如图,l1∥l2∥l3 , 且l1 , l2之间的距离为2,l2 , l3之间的距离为3.若点A,B,C分别在直线l1 , l2 , l3上,且AC⊥BC,AC=BC,则AB的长是      .

图片_x0020_100007

5、如图,一次函数 的图象交x轴于点B,交y轴于点A,交反比例函数 的图象于点 ,若 ,且 的面积为2,则k的值为           

图片_x0020_100009

6、如图,AB为半圆O的直径,M,C是半圆上的三等分点,AB=8,BD与半圆O相切于点B.点P为 上一动点(不与点A,M重合),直线PC交BD于点D,BE⊥OC于点E,延长BE交PC于点F,则下列结论正确的是      .(写出所有正确结论的序号)

①PB=PD;② 的长为 π;③∠DBE=45°;④△BCF∽△PFB;⑤CF•CP为定值.

图片_x0020_100011

三、解答题(共8小题)

1、某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)当销售单价为70元时,每天的销售利润是多少?
(2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量x的取值范围;
(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)
2、如图,已知反比例函数y= 的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).

(1)求n和b的值;
(2)求△OAB的面积;
(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.
3、计算: .
4、定义:连结菱形的一边中点与对边的两端点的线段把它分成三个三角形,如果其中有两个三角形相似,那么称这样的菱形为自相似菱形.

 

(1)判断下列命题是真命题,还是假命题?

①正方形是自相似菱形;

②有一个内角为60°的菱形是自相似菱形.

③如图1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED.

(2)如图2,菱形ABCD是自相似菱形,∠ABC是锐角,边长为4,E为BC中点.

①求AE,DE的长;

②AC,BD交于点O,求tan∠DBC的值.

5、某中学开展了四项体育锻炼活动:A:篮球;B:足球;C:跳绳;D:跑步.陈老师对学生最喜欢的一项体育锻炼活动进行了抽样调查(每人只限一项),并将 调查结果绘制成图 1,图2两幅不完整的统计图.

 

请根据图中信息解答下列问题:

(1)参加此次调查的学生总数是      人;将图1、图2的统计图补充完整;      
(2)已知在被调查的最喜欢篮球的3名学生中只有1名男生,现从这3名学生中任意抽

取2名学生参加校篮球队,请用列表法或画树状图的方法,求出恰好抽到两名女生的概率.

6、太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为 ,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面, 于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)

图片_x0020_100015 图片_x0020_100016

7、如图,△ABC内接于⊙O,AB为直径,∠BAC=60°,延长BA至点P使AP=AC, 作CD平分∠ACB交AB于点E,交⊙O于点D. 连结PC,BD.

图片_x0020_100020

(1)求证:PC为⊙O的切线;
(2)求证:BD= PA;
(3)若PC= ,求AE的长.
8、如图,A,B,C,D四点都在OO上,弧AC=弧BC,连接AB,CD、AD,∠ADC=45°.

图片_x0020_100030

(1)如图1,AB是⊙O的直径;
(2)如图2,过点B作BE⊥CD于点E,点F在弧AC上,连接BF交CD于点G,∠FGC=2∠BAD,求证:BA平分∠FBE;
(3)如图3,在(2)的条件下,MN与⊙O相切于点M,交EB的延长线于点N,连接AM,若2∠MAD+∠FBA=135°,MN= AB,EN=26,求线段CD的长.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 浙江省台州市2021届九年级上学期数学期末考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;