河南省平顶山市2018-2019学年八年级下学期数学期末考试试卷
年级: 学科: 类型:期末考试 来源:91题库
一、单选题(共10小题)
1、如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是( )
A . AE=CF
B . BE=FD
C . BF=DE
D . ∠1=∠2
2、下列图形是物理学中的力学、电学等器件的平面示意图,从左至右分别代表小车、音叉、凹透镜和砝码,其中是中心对称图形的是( )
A .
B .
C .
D .




3、若
,则下列不等式不成立的是( )

A .
B .
C .
D .




4、已知分式方程
,去分母后得( )

A .
B .
C .
D .




5、下列式子从左至右的变形,是因式分解的是( )
A .
B .
C .
D .




6、如图,
中,
于点
,点
为
的中点,连接
,则
的周长是( )







A . 4+2
B . 7+
C . 12
D . 10


7、如图,在
中,
,以顶点
为圆心,适当长为半径画弧,分别交边
于点
,现分别以
为圆心,以大于
的长为半径画弧,两弧交于点
,作射线
交边
于点
,若
则
的面积是( )













A . 10
B . 20
C . 30
D . 40
8、张老师和李老师住在同一个小区,离学校3000米,某天早晨,张老师和李老师分别于7点5分、7点15分离家骑自行车上班,刚好在校门口相遇,已知李老师骑车的速度是张老师的1.2倍,为了求他们各自骑自行车的速度,设张老师骑自行车的速度是
米/分,则可列得方程为( )

A .
B .
C .
D .




9、如图,在
中,
,
垂直平分
于点
,交
于点
,则
为( )








A . 30°
B . 25°
C . 20°
D . 15°
10、如图,已知函数
和
的图象相交于点
,则关于
的不等式
的解集为( )





A .
B .
C .
D .




二、填空题(共5小题)
1、一个多边形的内角和等于它的外角和,这个多边形是 边形.
2、“对顶角相等”的逆命题是 命题(填真或假)
3、若多项式
,则
= .


4、若关于
的分式方程
的解是非负数,则
的取值范围是 .



5、如图,在平行四边形
中,点
在
上,
,点
是
的中点,若点
以1厘米/秒的速度从
点出发,沿
向点
运动;点
同时以2厘米/秒的速度从
点出发,沿
向点
运动,点
运动到
停止运动,点
也同时停止运动,当点
运动时间是 秒时,以点
为顶点的四边形是平行四边形.



















三、解答题(共8小题)
1、给出三个多项式:
,请选择两个多项式进行加法运算,并把结果分解因式(写出两种情况).

2、先化简再求值:
,其中
.


3、解不等式组
,并把解集表示在数轴上,再找出它的整数解.

4、如图,在平面直角坐标系中,已知
的三个顶点的坐标分别为
.


①将 先向右平移4个单位长度,再向上平移2个单位长度,得到
,画出
;
② 与
关于原点
成中心对称,画出
;
③ 和
关于点
成中心对称,请在图中画出点
的位置.
5、如图:
,点
在一条直线上,
.求证:四边形
是平行四边形.




6、如图,在
中,
是
边上的中线,
的垂直平分线分别交
于点
,连接
.







(1)求证:点
在
的垂直平分线上;


(2)若
,请直接写出
的度数.


7、每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲乙两种型号的设备可供选购.经调查:购买3台甲型设备比购买2台乙型设备多花14万元,购买2台甲型设备比购买3台乙型设备少花4万元.
(1)直接写出甲乙两种型号设备每台的价格分别为多少万元;
(2)该公司经预算决定购买节省能源的新设备的资金不超过90万元,你认为该公司有几种购买方案?
(3)在(2)的条件下,若该公司使用新设备进行生产,已知甲型设备每台的产量为240吨/月,乙型设备每台的产量为180吨/月,每月要求总产量不低于2040吨,请你为该公司设计一种最省钱的购买方案.
8、在
中,
,
,点D是
的中点,
,垂足为E,连接
.






(1)如图1,
与
的数量关系是 .


(2)如图2,若P是线段
上一动点(点P不与点B、C重合),连接
,将线段
绕点
逆时针旋转
得到线段
,连接
,请猜想
三者之间的数量关系,并证明你的结论;







