山西省大同市2018-2019学年八年级下学期数学期末考试试卷

年级: 学科: 类型:期末考试 来源:91题库

一、选择题(共10小题)

1、下列各式计算正确的是(   )
A . B . C . D .
2、若点A(2,3)在函数y=kx的图象上,则下列各点在此丽数图象上的是(   )
A . (1, ) B . (2,-3) C . (4,5) D . (-2,3)
3、下列长度的三根木棒首尾顺次连接,能组成直角三角形的是(   )
A . 1,2,3 B . 4,6,8 C . 6,8,10 D . 13,14,15
4、如图,以原点O为圆心,OB长为半径画弧与数轴交于点A,若点A表示的数为x , 则x的值为(   )

图片_x0020_100001

A . B . - C . -2 D . 2-
5、下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数 与方差s2

平均数 cm

561

560

561

560

方差s2cm2

3.5

3.5

15.5

16.5

根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择      

6、一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是(   )

图片_x0020_49701875

A . x>0 B . x<0 C . x>-1 D . x>2
7、如图是我国一位古代数学家在注解《周髀算经》时给出的,曾被选为2002年在北京召开的国际数学家大会的会徽,它通过对图形的切割、拼接,巧妙地证明了勾股定理,这位伟大的数学家是(   )

图片_x0020_589809934

A . 杨辉 B . 刘徽 C . 祖冲之 D . 赵爽
8、小明用作图象的方法解二元一次方程组时,他作出了相应的两个一次函数的图象,则他解的这个方程组是(  )

图片_x0020_443909696

A . B . C . D .
9、已知将直线y=x+1向下平移3个单位长度后得到直线y=kx+b , 则下列关于直线y=kx+b的说法正确的是(   )
A . 经过第一、二、四象限 B . x轴交于(2,0) C . 与直线y=2x+1平行 D . y随的增大而减小
10、如图,矩形 中, ,点 从点 出发,沿 向终点 匀速运动.设点 走过的路程为 的面积为 ,能符合题意反映 之间函数关系的图象是(   )

图片_x0020_1204620612

A . 图片_x0020_100003 B . 图片_x0020_100004 C . 图片_x0020_100005 D . 图片_x0020_100006

二、填空题(共5小题)

1、函数 中自变量x的取值范围是      .
2、如图,直线y=kx+b与直线y=2x交于点P(1,m),则不等式2x<kx+b的解集为      .

图片_x0020_100012

3、如果两个最简二次根式 能合并,那么       
4、如图,菱形ABCD中,AC、BD交于点O,DE⊥BC于点E,连接OE,若∠ABC=120°,则∠OED=      .

图片_x0020_100013

5、如图,三个边长均为1的正方形按如图所示的方式摆放,A1 , A2分别是正方形对角线的交点,则重叠部分的面积和为      .

图片_x0020_100014

三、综合题(共8小题)

1、计算:
(1)(1- )+|1-2 |+ × .
(2)( +2 - .
2、如图,在 ABCD中,延长边BA到点E,延长边DC到点F,使CF=AE,连接EF,分别交AD,BC于点M,N.

求证:AM=CN.

图片_x0020_100016

3、如图,正比例函数y1=kx与-次函数y2=mx+n的图象交于点A(3,4),一次函数y2的图象与x轴,y轴分别交于点B,点C,且0A=OC.

(1)求这两个函数的解析式;
(2)求直线AB与两坐标轴所围成的三角形的面积.
4、随着教育教学改革的不断深入,应试教育向素质教育转轨的力度不断加大,体育中考已成为初中毕业升学考试的重要内容之一。为了解某市九年级学生中考体育成绩情况,现从中随机抽取部分考生的体育成绩进行调查,并将调查结果绘制如下图表:

2019年中考体育成绩(分数段)统计表

分数段

频数(人)

频率

25≤x<30

12

0.05

30≤x<35

24

b

35≤x<40

60

0.25

40≤x<45

a

0.45

45≤x<50

36

0.15

图片_x0020_100019

根据上面提供的信息,回答下列问题:

(1)表中a和b所表示的数分别为a=      ,b=      ;并补全频数分布直方图      
(2)甲同学说“我的体育成绩是此次抽样调查所得数据的中位数。”请问:甲同学的体育成绩在      分数段内?
(3)如果把成绩在40分以上(含40分)定为优秀那么该市12000名九年级考生中考体育成绩为优秀的约有多少名?
5、阅读下列一段文字,然后回答下列问题:

已知平面内两点P1(x1y1),P2(x2y2),其两点间的距离 。例如:已知P(3,1),Q(1,-2),则这两点间的距离 .特别地,如果两点M(x1y1),N(x2y2),所在的直线与坐标轴重合或平行于坐标轴或者垂直于坐标轴,那么这两点间的距离公式可简化为

图片_x0020_100021

(1)已知A(2,3),B(-1,-2),则A,B两点间的距离为      
(2)已知M,N在平行于y轴的直线上,点M的纵坐标为-2,点N的纵坐标为3,则M,N两点间的距离为      
(3)在平面直角坐标系中,已知A(0,4),B(4,2),在x轴上找点P,使PA+PB的长度最短,求出点P的坐标及PA+PB的最短长度.
6、“雁门清高”苦荞茶,是大同左云的特产,享誉全国,某经销商计划购进甲、乙两种包装的苦荞茶500盒进行销售,这两种茶的进价、售价如下表所示:

进价(元/盒)

售价(元/盒)

甲种

40

48

乙种

106

128

设该经销离购进甲种包装的苦荞茶x盒,总进价为y元。

(1)求yx的函数关系式
(2)为满足市场需求,乙种包装苦荞茶的数量不大于甲种包装数量的4倍,请你求出获利最大的进货方案,并求出最大利润。
7、综合与实践

(问题情境)

在综合与实践课上,同学们以“矩形的折叠”为主题展开数学活动,如图1,在矩形纸片ABCD中,AB=4,BC=5,点E,F分别为边AB,AD上的点,且DF=3。

图片_x0020_100023

(操作发现)

(1)沿CE折叠纸片,B点恰好与F点重合,求AE的长;
(2)如图2,延长EF交CD的延长线于点M,请判断△CEM的形状,并说明理由。
(3)(深入思考)

把图2置于平面直角坐标系中,如图3,使D点与原点O重合,C点在x轴的负半轴上,将△CEM沿CE翻折,使点M落在点M′处.连接CM′,求点M′的坐标.

8、综合与探究

如图,在平面直角坐标系中,直线y= x-3与坐标轴交于A,B两点.

图片_x0020_348561835

(1)求A,B两点的坐标;
(2)以AB为边在第四象限内作等边三角形ABC,求△ABC的面积;
(3)在平面内是否存在点M,使得以M,O,A,B为顶点的四边形是平行四边形,若存在,直接写出M点的坐标:若不存在,说明理由.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 山西省大同市2018-2019学年八年级下学期数学期末考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;