浙江省2018-2019学年九年级上学期数学期末综合检测卷
年级: 学科: 类型:期末考试 来源:91题库
一、单选题(共10小题)
如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,-1),C(-2,-1),D(-1,1).y轴上一点P(0,2)绕点A旋转180°得点P1 , 点P1绕点B旋转180°得点P2 , 点P2绕点C旋转180°得点P3 , 点P3绕点D旋转180°得点P4 , ……,重复操作依次得到点P1 , P2 , …, 则点P2010的坐标是( ).
①直径不是弦;
②三点确定一个圆;
③圆是轴对称图形,任何一条直径所在直线都是它的对称轴;
④相等的圆心角所对的弧相等,所对的弦也相等


















二、填空题(共6小题)
①16a﹣4b+c<0;②若P(﹣5,y1),Q( ,y2)是函数图象上的两点,则y1>y2;③a=﹣
c;④若△ABC是等腰三角形,则b=﹣
.其中正确的有 (请将结论正确的序号全部填上)


三、解答题(共8小题)
如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.
(1)求证:四边形ABCE是平行四边形;
(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.
(1)在图①中以AB和BC为边画四边形ABCD,点D在小正方形的顶点上,且此四边形为中心对称图形;
(2)在图②中以AB和BC为边画四边形ABCE,点E在小正方形的顶点上,且此四边形的面积等于(1)中所画的四边形ABCD的面积;
(3)图①所画的四边形与图②所画的四边形不全等.
如图,已知AD既是△ABC的中线,又是角平分线,请判断:
(1)△ABC的形状;
(2)AD是否过△ABC外接圆的圆心O,⊙O是否是△ABC的外接圆,并证明你的结论.
在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.
(1)当四边形ABCD是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;
(2)当四边形ABCD是平行四边形时,如图2,已知AC=kBD,请猜想此时AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;
(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(1)AC′与BD′的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.
(1)若∠A=60°,∠ABD=24°,求∠ACF的度数;
(2)若EF=4,BF:FD=5:3,S△BCF=10,求点D到AB的距离.

B(-3,1),C(-1,4).
①画出△ABC关于y轴对称的△A1B1C1;
②将△ABC绕着点B顺时针旋转90°后得到△A2BC2 , 请在图中画出△A2BC2 , 并求出线段BC旋转过程中所扫过的面积(结果保留 )
①写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式,并写出x的取值范围.
②若商场要每天获得销售利润2000元,销售单价应定为多少元?
③求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?