天津市东丽区2021年中考数学一模试卷
年级: 学科: 类型:中考模拟 来源:91题库
一、单选题(共12小题)
1、2cos45°的值等于( )
A . 1
B .
C .
D . 2


2、如图,是一个由5个相同的正方体组成的立体图形,它的左视图是( )
A .
B .
C .
D .




3、计算
的值是( )

A .
B . 6
C .
D . 12


4、在3月份市民政局召开的全市基金会脱贫攻坚总结会上获悉,过去的三年,全市社会组织积极作为,全力投入脱贫攻坚事业,共有779家社会组织承接扶贫项目673个,帮扶资金总计达174000000元,数字174000000用科学记数法表示应为( )
A .
B .
C .
D .




5、在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )
A .
B .
C .
D .




6、估计
的值在( )

A . 2和3之间
B . 3和4之间
C . 4和5之间
D . 5和6之间
7、计算
的结果是( )

A . 5
B .
C .
D .



8、如图,四边形
为菱形,A , B两点的坐标分别是
,点C , D在坐标轴上,则菱形
的周长等于( )



A .
B .
C .
D .




9、方程组
的解是( )

A .
B .
C .
D .




10、若点
都在反比例函数
的图象上,则
的大小关系是( )



A .
B .
C .
D .




11、如图,有一张矩形纸条
,点M , N分别在边
上,
.现将四边形
沿
折叠,使点B , C分别落在点
上.当点
恰好落在边
上时,下列结论不一定正确的是( )








A .
B .
C .
D .




12、二次函数
(a , b , c是常数,
)经过点
,且
.当
时,y随x的增大而增大.下列结论:①
:②若点
在抛物线上,则
:③
其中,正确结论的个数是( )









A . 0
B . 1
C . 2
D . 3
二、填空题(共6小题)
1、计算
的结果是 .

2、计算
的结果等于 .

3、不透明袋子中装有13个球,其中有3个红球、4个绿球和6个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是 .
4、直线
与y轴交点坐标为 .

5、如图,正方形
和
,
,
,连接
,
.若
绕点A旋转,当
最大时,
.









6、如图,是由边长为1的小正方形组成的
的网格,
的顶点都在格点上,请仅用无刻度的直尺作图.


(1)线段
的长等于 ;

(2)请在如图所示的网格中,用无刻度的直尺,画出一个格点P , 使
并简要说明画图方法(不要求证明)

三、解答题(共7小题)
1、解不等式组

请结合题意填空,完成本题的解答.
(1)解不等式①,得 .
(2)解不等式②,得 .
(3)把不等式①和②的解集在数轴上分别表示出来:
(4)原不等式组的解集为 .
2、某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如下统计图.
请根据相关信息,解答下列问题:
(1)扇形统计图中的
,条形统计图中的
;


(2)求所调查的初中学生每天睡眠时间的平均数、众数和中位数,
3、如图,
是
直径,
是
的弦,
.





(1)如图1,求
的度数;

(2)如图2.过点C作
的切线,与
的延长线相交于点E , 求
的大小.



4、如图,小山上有一座
高的电视发射塔
,为了测量小山的高度
.在山脚某处D测得山顶的仰角为
,测得塔项的仰角为
,求小山的高.(已知:
)(结果精确到
)







5、小明骑自行车保持匀速从甲地到乙地,到达乙地后,休息了一段时间,然后以相同的速度原路返回,停在甲地.设小明出发
后,到达距离甲地
的地方,图中的折线表示的是y与x之间的函数关系.


(1)根据题意填空:甲、乙两地的距离 m ,
;

(2)求小明从乙地返回甲地过程中,y与x之间的函数关系式:
(3)在小明从甲地出发的同时,小红从乙地步行至甲地,保持
的速度不变,到甲地停止.小明从甲地出发
与小红相距
?



6、在平面直角坐标系中,点A的坐标为
,点B的坐标为
,把
绕原点O顺时针旋转,得到
,记旋转角为
.





(1)如图①,当
时,求点
的坐标.


(2)设直线
与直线
相交于点M , 如图②,当
时,求
的面积.




7、如图,在平面直角坐标系中,直线
与x轴交于点C,与抛物线
交于点A,此抛物线与x轴的正半轴交于点
,且
.




(1)求抛物线的解析式;
(2)点P是直线
上方抛物线上的一点.过点P作
垂直于x轴于点D,交线段
于点E,使
.




①求点P的坐标;
②在直线 上是否存在点M,使
为以
为直角边的直角三角形?若存在,直接写出符合条件的点M的坐标;若不存在,说明理由.