河南南阳市卧龙区2020年数学中考二模试卷

年级: 学科: 类型:中考模拟 来源:91题库

一、选择题(共10小题)

1、如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为(   )
A . 4 B . 3 C . 2 D . 1
2、如图,在 中, ,以点 为圆心,适当长为半径画弧,分别交 于点 ,再分别以点 为圆心,大于 为半径画弧,两弧交于点 ,作射线 交边 于点 ,则 的面积是(   )

A . B . C . D .
3、下列各数中最大的负数是(   )
A . B . C . -1 D . -3
4、某种计算机完成一次基本运算的时间约为1 纳秒(ns),已知1 纳秒=0.000000001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为(   )
A . 1.5× B . 15× C . 1.5× D . 15×
5、如图, ,点O在 上, 平分 ,则 (   )

A . B . C . D .
6、小明同学做了下面四道计算题:① ;② ;③ ;④ ,其中正确的个数是(   )
A . 4 B . 3 C . 2 D . 1
7、关于x的一元二次方程 的根的情况是(   )
A . 有两个相等的实数根 B . 有两个不相等的实数根 C . 没有实数根 D . m不确定,所以无法判断
8、一个几何体由一些大小相同的小正方体组成,如图是它的主视图和左视图,那么组成该几何体所需小正方体的个数最少为(   )

A . 5 B . 6 C . 7 D . 8
9、如图1,已知在四边形ABCD中, ,动点P从点B出发沿折线B→A→D→C的方向以1个单位/秒的速度匀速运动,整个运动过程中,△BCP的面积S与运动时间t(秒)的函数关系如图2所示,则AD的长为(   )

A . 5 B . C . 8 D .
10、我们知道,四边形具有不稳定性,如图,平行四边形ABCD的顶点A在y轴上, 轴,已知点B(4,3),D(2,6),固定A、B两点,拖动CD边向右下方平行移动,使平行四边形ABCD的面积变为原来的 ,则变换后点D的对应点 的坐标为(   )

A . B . C . D .

二、填空题(共5小题)

1、计算:       .
2、婷婷和她妈妈玩猜拳游戏.规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时婷婷获胜.那么,婷婷获胜的概率为      .

3、如图,在△ABC中, ,AD是BC边上的中线,将△ACD沿AD折叠,使点C落在点F处,DF交AB于点E,则∠DEB=      .

4、如图,已知在矩形ABCD中, ,以点A为圆心,AD长为半径作弧 ,交AB于点E,以AB为直径的半圆恰好与边DC相切,则图中阴影部分的面积为      .

 

5、如图,已知在△ABC中, ,点E为AB的中点,D为BC边上的一动点,把△ACD沿AD折叠,点C落在点F处,当△AEF为直角三角形时,CD的长为      .

三、解答题(共8小题)

1、先化简,再求值: ,其中a的值从不等式组 的解集中选取一个整数.
2、某学校为了解九年级的600名学生每天的自主学习情况,随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两副不完整的统计图(图1图2),请根据统计图中的信息回答下列问题:

(1)本次调查的学生人数是      人;
(2)图2中角       度;
(3)将图1条形统计图补充完整;
(4)估算该校九年级学生自主学习不少于1.5小时有多少人.
3、如图,已知在Rt△ABC中, ,以BC为直径作 交AB于点E,D为AC边的中点,连接OD、DE,

(1)求证:DE是 的切线.
(2)填空:①若 ,则 的半径长是      .

②当∠A=      时,四边形OCDE是正方形.

4、为积极宣传国家相关政策,某村在一山坡的顶端的平地上竖立一块宣传牌 .小明为测得宣传牌的高度,他站在山脚C处测得宣传牌的顶端 的仰角为 ,已知山坡 的坡度 ,山坡 的长度为 米,山坡顶端 与宣传牌底端 的水平距离为2米,求宣传牌的高度 (精确到1米)

(参考数据:

5、某茶具店购进了A、B两种不同的茶具,1套A种茶具和2套B种茶具共需250元;3套A种茶具和4套B种茶具共需600元.
(1)求A、B两种茶具每套的进价分别是多少元?
(2)由于茶具畅销,茶具店准备再购进A、B两种茶具共80套,但这次进货时,工厂对A种茶具每套进价提高了8%,而B种茶具每套按第一次进价的八折,若茶具店本次进货总钱数不超过6240元,则最多可进A种茶具几套?
(3)若销售一套A种茶具可获利30元,销售一套B种茶其可获利20元,在(2)的条件下,如何进货可使本次购进茶具获利最多?最多是多少?
6、如图,点 是直线 与反比例函数 图象的两个交点, 轴于点C,已知点D(0,1),连接AD、BD、BC,

(1)求反比例函数和直线AB的表达式;
(2)根据函数图象直接写出当 时不等式 的解集;
(3)设△ABC和△ABD的面积分别为 ,求 的值.
7、如图1,在矩形ABCD中,AB=6,BC=8,点E是边CD上的点,且CE=4,过点E作CD的垂线,并在垂线上截取EF=3,连接CF.将△CEF绕点C按顺时针方向旋转,记旋转角为a.

(1)问题发现

当a=0°时,AF=      ,BE=            

(2)拓展探究

试判断:当0°≤a°<360°时, 的大小有无变化?请仅就图2的情况给出证明.

(3)问题解决

当△CEF旋转至A,E,F三点共线时,直接写出线段BE的长.

8、如图,抛物线 经过点A(4,0)、B(1,0),交y轴于点C.

(1)求抛物线的解析式.
(2)点P是直线AC上方的抛物线上一点,过点P作 于点H,求线段PH长度的最大值.
(3)Q为抛物线上的一个动点(不与点A、B、C重合), 轴于点M,是否存在点Q,使得以点A、Q、M三点为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标,若不存在,请说明理由.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 河南南阳市卧龙区2020年数学中考二模试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;