广东省中山市2020年中考数学二模试卷
年级: 学科: 类型:中考模拟 来源:91题库
一、单选题(共10小题)
1、如图所示的四棱柱的主视图为( )
A .
B .
C .
D .




2、随着我国金融科技的不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,今年“双十一”天猫成交额高达2135亿元.将数据“2135亿”用科学记数法表示为( )
A . 2.135×1011
B . 2.135×107
C . 2.135×1012
D . 2.135×103
3、如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=( )
A . 65°
B . 70°
C . 75°
D . 80°
4、
的相反数是( )

A . 2020
B . -2020
C .
D .


5、下图是用来证明勾股定理的图案被称为“赵爽弦图”,由四个全等的直角三角形和一个小正方形拼成的大正方形,对其对称性表述,正确的是( )
A . 轴对称图形
B . 中心对称图形
C . 既是轴对称图形又是中心对称图形
D . 既不是轴对称图形又不是中心对称图形
6、在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为( )
A . 42
B . 45
C . 46
D . 48
7、下列等式中,不一定成立的是( )
A . 3m2﹣2m2=m2
B . m2•m3=m5
C . (m+1)2=m2+1
D . (m2)3=m6
8、已知有理数a、b在数轴上的位置如图所示,则下列代数式的值最大的是( )
A . a+b
B . a﹣b
C . |a+b|
D . |a﹣b|
9、若
是方程
的一个根.则代数式
的值是( )



A .
B .
C .
D .




10、如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,AE、AF分别交BD于M、N,连按EN、EF,有以下结论:
①△ABM∽△NEM;②△AEN是等腰直角三角形;③当AE=AF时, ;④BE+DF=EF;⑤若点F是DC的中点,则CE
CB.
其中正确的个数是( )
A . 2
B . 3
C . 4
D . 5
二、填空题(共7小题)
1、
的算术平方根是 ,
= .


2、如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=2,则阴影部分的面积是 .
3、分解因式:m4﹣81m2= .
4、如图,四边形ABCD中,∠B+∠ADC=150°,∠1,∠2分别是∠BCD和∠BAD的邻补角,则∠1+∠2= .
5、
,则(﹣m)n= .

6、如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为 米(结果保留根号).
7、如图,将一块直角三角板OAB放在平面直角坐标系中,B(2,0),∠AOB=60°,点A在第一象限,过点A的双曲线为
.在x轴上取一点P,过点P作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后的像是O´B´.

(1)当点O´与点A重合时,点P的坐标是 ;
(2)设P(t,0),当O´B´与双曲线有交点时,t的取值范围是 .
三、解答题(共8小题)
1、先化简,再求值:(2﹣
)÷
,其中x=
﹣3.



2、如图,⊙O的直径AB=26,P是AB上(不与点A、B重合)的任一点,点C、D为⊙O上的两点,若∠APD=∠BPC,则称∠CPD为直径AB的“回旋角”.
(1)若∠BPC=∠DPC=60°,则∠CPD是直径AB的“回旋角”吗?并说明理由;
(2)若
的长为
π,求“回旋角”∠CPD的度数;


(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+13
,直接写出AP的长.

3、计算:|﹣
|﹣2﹣1﹣(π﹣4)0 .

4、如图,已知四边形ABCD是平行四边形.
(1)用直尺和圆规作出对角线AC的垂直平分线,分别交AD,BC于E,F;(保留作图痕迹,不写作法)
(2)在(1)作出的图形中,连接CE,AF,若AB=4,BC=8,且AB⊥AC,求四边形AECF的周长.
5、某环卫公司承包了市区两个片区道路的清扫任务,需要购买某厂家A,B两种型号的马路清扫车,购买5辆A型马路清扫车和6辆B型马路清扫车共需171万元;购买3辆A型马路清扫车和12辆B型马路清扫车共需237万元.
(1)求这两种马路清扫车的单价;
(2)恰逢该厂举行30周年庆,决定对这两种马路清扫车开展促销活动,具体方案如下:购买A型马路清扫车按原价的八折销售,购买B型马上清扫车不超过10辆时按原价销售,超过10辆的部分按原价的七折销售.设购买x辆A种马路清扫车需要y1元,购买x(x>0)个B型马路清扫车需要y2元,分别求出y1 , y2关于x的函数关系式;
(3)若该公司承包的道路清扫面积为118000m2 , 每辆A型马路清扫车每天清扫5000m2 , 每辆B型马路清扫车每天清扫6000m2 , 公司准备购买20辆马路清扫车,且B型马路清扫车的数量大于10.请你帮该公司设计出最省钱的购买方案.请说明理由.
6、2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.
对冬奥会了解程度的统计表
对冬奥会的了解程度 |
百分比 |
A非常了解 |
10% |
B比较了解 |
15% |
C基本了解 |
35% |
D不了解 |
n% |
(1)n= ;
(2)扇形统计图中,D部分扇形所对应的圆心角是 ;
(3)请补全条形统计图;
(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.
7、如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.
(1)求证:四边形ODEC是矩形;
(2)当∠ADB=60°,AD=2
时,求sin∠AED的值,求∠EAD的正切值.

8、已知:抛物线
经过坐标原点.

(1)求抛物线的解析式和顶点B的坐标;
(2)设点A是抛物线与x轴的另一个交点且A、C两点关于y轴对称,试在y轴上确定一点P,使PA+PB最短,并求出点P的坐标;
(3)过点A作AD∥BP交y轴于点D,求到直线AP、AD、CP距离相等的点的坐标.