江西省上饶市广丰区2019年中考数学一模考试试卷

年级: 学科: 类型:中考模拟 来源:91题库

一、单选题(共6小题)

1、在- 、- 、-|-2|、- 这四个数中,最大的数是(   )
A . B . C . D .
2、下列运算正确是(   )
A . B . C . D .
3、已知不等式组 其解集在数轴上表示正确是(   )
A . B . C . D .
4、我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三梭柱称为“堑堵”,已知“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的体积为(   )

A . B . C . D . 16
5、如图,正六边形的中心为原点O,点A的坐标为(0,4),顶点E(-1, ),顶点B(1, ),设直线AE与y轴的夹角∠EAO为α,现将这个六边形绕中心O旋转,则当α取最大角时,它的正切值为(   )

A . B . 1 C . D .
6、已知抛物线y=-x2+2mx-m2+1与x轴的正半轴交于为A、B(点B在点A的右侧),与y交于C,顶点为P.某数学学习小组在探究函数的图象与性质时得到以下结论:①开口向下,对称轴是直线x=m;②A(m-1,0),B(m+1,0);③函数最大值是1;④△BAP是等腰直角三角形;⑤当△BOC为等腰三角形时,抛物线的解析式是y=-x2+4x-3.以上结论正确有(   )个.
A . 1 B . 2 C . 3 D . 4

二、填空题(共6小题)

1、计算:- ÷(-2)=      
2、按照IMF的预测,中国的GDP的总值约为13.6万亿美元,13.6万亿美元用科学记数法可表示为      美元.
3、5个正整数,中位数是4,唯一的众数是6,则这5个数和的最大值为      
4、对于任意实数 ,定义: = .若方程 的两根记为 ,则m2+mn+n2=      .
5、如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的顶点B的坐标为      

6、已知矩形OABC中,O为坐标原点,点A在x轴上,点C在y轴上,B的坐标为(10,5),点P在边BC上,点A关于OP的对称点为A',若点A'到直线BC的距离为4,则点A'的坐标可能为      

三、解答题(共11小题)

1、如图,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,请仅用无刻度直尺作图:

(1)在图1中作出圆心O;
(2)在图2中过点B作BF∥AC.
2、     
(1)已知x满足x2-4x-2=0,求(2x-3)2-(x+y)(x-y)-y2的值;
(2)如图,在等边△ABC中,点D、E分别在边BC、AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.求证:DC=CF.

3、已知关于x的分式方程 + = .
(1)已知m=4,求方程的解;
(2)若该分式方程无解,试求m的值.
4、某校组织九年级学生参加中考体育测试,共租用4辆客车,分别编号为1、2、3、4.
(1)求甲同学随机坐1号车的概率;
(2)求甲、乙两位同学随机都乘坐1号车的概率.
5、小明通过“电e宝”查询得知电费分阶梯付费,如图:

(1)已知小明家10月份累计电量为2060度,现“电e宝”短信通知11月交费177元,求小明家11份的用电量是多少度?
(2)写出小明家12月的电费与年累计电量x度的关系式.
6、在创客教育理念的指引下,国内很多学校都纷纷建立创客实践室及创客空间,致力于从小培养孩子的创新精神和创造能力,某校开设了“3D”打印、数学编程、智能机器人、陶艺制作“四门创客课程记为A、B、C、D,为了解学生对这四门创客课程的喜爱情况,数学兴趣小组对全校学生进行了随机问卷调查,将调查结果整理后绘制成两幅均不完整的统计图表:

创客课程

频数

频率

“3D”打印

36

0.45

数学编程

0.25

智能机器人

16

b

陶艺制作

8

合计

a

1

请根据图表中提供的信息回答下列问题:

(1)统计表中的a=      ,b=      
(2)“陶艺制作”对应扇形的圆心角为      
(3)根据调查结果,请你估计该校300名学生中最喜欢“智能机器人”创客课程的人数;
(4)学校为开设这四门课程,预计每生A、B、C、D四科投资比为4:3:6:7,若“3D打印课程每人投资200元,求学校为开设创客课程,需为学生人均投入多少钱?
7、如图,在平面直角坐标系中,矩形OBDC的两边OB、OC分别在x轴和y轴上,点D在反比例函数y= 的图象上,反比例函数y= 的图象交DC、BD于点E、F.

(1)若CE:DC=1:4,求k的值;
(2)连接BC、EF,求证:EF∥BC.
8、如图,甲、乙两车在行驶、超车过程均近似地看作直线平移,已知甲、乙两车均以20米/秒的速度在右车道匀速行驶,甲车头D与乙车头A之间的距离AD=50米,车宽EC=1.8米,为保证安全,一般车子在行驶过程中与车行道分界线相距0.6米,甲、乙两车行驶路线与CD所在直线平行于道路分界线,现乙车加速,沿路线AB加速行驶到左车道,且∠BAC=1.5o , 若B、C、E刚好在同一水平线上.

(1)求CD的距离;
(2)已知该高速路段限速110km/h,判断乙车在超车过程是否超速?请通过计算说明.

(参考数据:tanl.5o≈0.015,sin1.5o≈0.014)

9、如图,点E为正方形ABCD边AB上运动,点A与点F关于DE对称,作射线CF交DE延长线于点P,连接AP、BF.

(1)若∠ADE=15°,求∠DPC的度数;
(2)试探究AP与PC的位置关系,并说明理由;
(3)若AB=2,求BF的最小值.
10、某数学兴趣小组在探究函数y=|x2-4x+3|的图象和性质时,经历以下几个学习过程:
(1)列表(完成以下表格)

x

-2

-1

0

1

2

3

4

5

6

y1=x2-4x+3

15

8

0

0

3

15

y=|x2-4x+3|

15

8

0

0

3

15

(2)描点并画出函数图象草图(在备用图1中描点并画图)

(3)根据图象完成以下问题

(ⅰ)观察图象

函数y=|x2-4x+3|的图象可由函数y1=x2-4x+3的图象如何变化得到?

答:      

(ⅱ)数学小组探究发现直线y=8与函数y=|x2-4x+3|的图象交于点E、F,E(-1,8),F(5,8),则不等式|x2-4x+3|>8的解集是      

(4)设函数y=|x2-4x+3|的图象与x轴交于A、B两点(B位于A的右侧),与y轴交于点C.

①求直线BC的解析式;

②探究应用:将直线BC沿y轴平移m个单位后与函数y=|x2-4x+3|的图象恰好有3个交点,求此时m的值.

11、如图, 分别为 上的动点(点 除外),连接 交于点P, .我们约定:线段 所对的 ,称为线段 的张角.

情景发现

(1)已知三角形 是等边三角形,

①求线段 的张角 的度数;

②求点P到 的最大距离;

③若点P的运动路线的长度称为点P的路径长,求点P的路径长.

拓展探究

(2)在(1)中,已知 是圆P的外切三角形,若点 的运动路线的长度称为点 的路径长,试探究点 的路径长与点P的路径长之间有何关系?请通过计算说明.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 江西省上饶市广丰区2019年中考数学一模考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;