吉林省长春市净月高新区2019年中考数学模拟考试试卷
年级: 学科: 类型:中考模拟 来源:91题库
一、单选题(共8小题)
1、如图所示的正六棱柱的主视图是( )
A .
B .
C .
D .




2、
的相反数是( )

A .
B . 2
C .
D .



3、今年清明小长假期问,长春净月某景区接待游客约为51700人次,数字51700用科学记数法表示为( )
A . 51.7×103
B . 5.17×104
C . 5.17×105
D . 0.517×105
4、不等式3x﹣3≤0解集在数轴上表示正确是( )
A .
B .
C .
D .




5、如图,AE∥DB,∠1=85°,∠2=28°,则∠C的度数为( )
A . 55°
B . 56°
C . 57°
D . 60°
6、如图,要测量河两相对的两点P、A之间的距离,可以在AP的垂线PB上取点C,测得PC=100米,用测角仪测得∠ACP=40°,则AP的长为( )
A . 100sin40°米
B . 100tan40°米
C .
米
D .
米


7、如图,O为圆心,
是直径,
是半圆上的点,
是
上的点.若
,则
的大小为( )






A .
B .
C .
D .




8、如图,在平面直角坐标系中,Rt△ABC的顶点A、B的坐标分别为(﹣1,1)、(3,0),直角顶点C在x轴上,在△ADE中,∠E=90°,点D在第三象限的双曲线y=
上,且边AE经过点C.若AB=AD,∠BAD=90°,则k的值为( )

A . 3
B . 4
C . ﹣6
D . 6
二、填空题(共6小题)
1、我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有八十足.问鸡兔各几何?”若设鸡有x只,兔有y只,请将题中数量关系用二元一次方程组列出得 .
2、分解因式:
= .

3、一元二次方程2x2﹣4x+1=0 实数根(填“有”或“无”)
4、如图,在△ABC中,∠ACB=90°.按以下步骤作图,分别以点A和点B为圆心,大于
的长为半径作圆弧,两弧交于点E和点F;作直线EF交AB于点D;连结CD,若AC=8,BC=6,则CD的长为 .

5、如图,已知双曲线
(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为 .

6、在平面直角坐标系中,将二次函数y=﹣x2+x+6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,将这个新函数的图象记为G(如图所示).当直线y=m与图象G有4个交点时,则m的取值范围是 .
三、解答题(共10小题)
1、用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.
2、先化简,再求值:(
﹣1)÷
,其中x=2


3、某校期末评选出四名“优秀课代表”,其中有2名男生和2名女生,若从他们中任选2人作为代表发言,请用画树状图(或列表)的方法,求恰好选中1男1女的概率.
4、如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.
(1)求证:四边形OCED是矩形;
(2)若CE=2,DE=3,求菱形ABCD的面积.
5、如图,线段AB经过圆心O,交⊙O于点A、C,点D为⊙O上一点,连结AD、OD、BD,∠A=∠B=30°.
(1)求证:BD是⊙O的切线.
(2)若OA=5,求OA、OD与AD围成的扇形的面积.
6、某校学生会为了解本校学生每天体育锻炼所用时间情况,采用问卷的方式对一部分学生进行调查确定调查对象时,大家提出以下几种方案:(A)对各班体育委员进行调査;(B)对某班的全体学生进行调查;(C)从全校每班随机抽5名学生进行调查在问卷调查时,每位被调查的学都选择了问卷中适合自己的十个时间段,学生会将收集到的数据整理后续制成如下的统计表:
被调查的学生每天体育锻炼所用时间统计表
组别 |
时间x(小时) |
频数 |
一 |
0≤x≤0.5 |
15 |
二 |
0.6<x≤1 |
27 |
三 |
1<x≤1.5 |
38 |
四 |
1.5<x≤2 |
13 |
五 |
x>2 |
7 |
(1)为了使收集到的数据具有代表性,学生会在确定调查对象时选择了方案 (填A、B或C);
(2)被调查的学生每天体育锻炼所用时间的中位数落在 组;
(3)根据以上统计结果,估计该校900名学生中每天体育锻炼时间不超过0.5小时的人数,并根据你计算的结果提出一条合理化建议.
7、一辆轿车从甲地驶往乙地,到达乙地后立即返回甲地,速度是原来的1.5倍,往返共用t小时.一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶,设轿车行驶的时间为x(h),两车离开甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图所示.
(1)轿车从乙地返回甲地的速度为 km/t,t= h ;
(2)求轿车从乙地返回甲地时y与x之间的函数关系式;
(3)当轿车从甲地返回乙地的途中与货车相遇时,求相遇处到甲地的距离.
8、图①、图②、图③均为方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.
(探究)在图①中,点A、B、C、D均为格点.证明:BD平分∠ABC.
(应用)在图②、图③中,点M、O、N均为格点.
(1)利用(探究)的方法,在图②、图③中分别找到一个格点P,使OP平分∠MON.要求:图②、图③中所画的图形不相同,保留画图痕迹.
(2)cos∠MOP的值为 .
9、如图,在矩形ABCD中,AB=6
,BC=3
动点P从点A出发,沿AC以每秒4个单位长度的速度向终点C运动.过点P(不与点A、C重合)作EF⊥AC,交AB或BC于点E,交AD或DC于点F,以EF为边向右作正方形EFGH设点P的运动时间为t秒.


(1)①AC= .②当点F在AD上时,用含t的代数式直接表示线段PF的长 .
(2)当点F与点D重合时,求t的值.
(3)设方形EFGH的周长为l,求l与t之间的函数关系式.
(4)直接写出对角线AC所在的直线将正方形EFGH分成两部分图形的面积比为1:2时t的值.
10、在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=
,那么称点Q为点P的“伴随点”.

例如:点(5,6)的“伴随点”为点(5,6);点(﹣5,6)的“伴随点”为点(﹣5,﹣6).
(1)直接写出点A(2,1)的“伴随点”A′的坐标.
(2)点B(m,m+1)在函数y=kx+3的图象上,若其“伴随点”B′的纵坐标为2,求函数y=kx+3的解析式.
(3)点C、D在函数y=﹣x2+4的图象上,且点C、D关于y轴对称,点D的“伴随点”为D′.若点C在第一象限,且CD=DD′,求此时“伴随点”D′的横坐标.
(4)点E在函数y=﹣x2+n(﹣1≤x≤2)的图象上,若其“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),直接写出实数n的取值范围.