吉林省长春市2020年中考数学二模考试试卷

年级: 学科: 类型:中考模拟 来源:91题库

一、选择题(本大题共8小题,每小题3分,共24分)(共8小题)

1、-2020的绝对值是(    )
A . -2020 B . C . D . 2020
2、华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000 000 007米,数据0.000 000 007用科学记数法表示为( )
A . 7×10-7 B . 0.7×10-8 C . 0.7×10-7 D . 7×10-9
3、窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案。下列表示我国古代窗棂样式结构的图案中,既是轴对称,又是中心对称的图形是( )
A . B . C . D .
4、计算(x2y)3的结果是(    )
A . x6y3 B . x5y2 C . x5y D . x2y3
5、若使 有意义,由x的取值范围是(    )
A . x>3 B . x>-3 C . x≥3. D . x≥-3
6、在数学活动也就是说上,九年级(1)班数学兴趣小组的同学们要测量某公园人工湖亭子A与它正东方向的主亭子B之间的距离,现测得亭子A位于点P北偏西30°方向,亭子B位于点P北偏东a方向,测得点P与亭子A之间的距离为200米,则亭子A与亭子B之间的距离为(    )

A . B . C . D .
7、如图,用三角板作△ABC的边AB上的高,下列三角板的摆放位置正确的是( )
A . B . C . D .
8、如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴,若反比例函数y= (k>0,x>0)的图象经过AC的中点D,则k的值为(    )

A . 4 B . 5 C . 6 D . 8

二、填空题(本大题共6小题,每小题3分,共18分)(共6小题)

1、因式分解:a3-16a=      
2、不等式组 的解集是      
3、用举反例的方法,说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题,则m的值可以是      
4、《九章算术》是我国古代数学的扛鼎之作,其中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,铭道长一尺,问径几何?”。其大意为:如图AB为圆O的直径,弦CD⊥AB于点E,AE=1寸,CD=10寸,则直径AB的长为       寸。

5、把正五边形和正六边形按如图所示方式放置,则∠a=      

6、跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位;米)与水平距离a(单位:米)近似满足函数关系y=ax2+bx+c(a≠0) 。右图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为      米。

三、解答题(本大题共10小题,共78分)(共10小题)

1、周末,甲、乙两名大学生骑自行车去距学校6000米的净月潭公园.两人同时从学校出发,以a米/分的速度匀速行驶.出发4.5分钟时,甲同学发现忘记带学生证,以1.5a米/分的速度按原路返回学校,取完学生证(在学校取学生证所用时间忽略不计),继续以返回时的速度追赶乙.甲追上乙后,两人以相同的速度前往净月潭.乙骑自行车的速度始终不变.设甲、乙两名大学生距学校的路程为s(米),乙同学行驶的时间为t(分),s与t之间的函数图象如图所示.

(1)求a、b的值.
(2)求甲追上乙时,距学校的路程.
(3)当两人相距500米时,直接写出t的值是      .
2、计算:

3、甲、乙两人做摸球游戏,在不透明的口袋里放人大小相同的两个黑球和两个白球,甲摸出两个球后放回并搅匀,乙再摸出两个球,若摸出一黑一白甲赢,若摸出两个相同颜色的乙赢.这个游戏公平吗?为什么?
4、在大城市,很多上班族选择“低碳出行”、电动车和共享单车成为他们的代步工具。某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体.已知他骑电动车的速度是骑共享单车的1.5倍,求他骑共享单车从家到单位上班花费的时间。
5、中国古代有二十四节气歌:“春雨惊春清谷天,夏满芒夏暑相连,秋处露秋寒霜降,冬雪雪冬小大寒“它是为便于记忆我国古时历法中二十四节气而编成的小诗歌。流传至今,其中第一个”冬“是指立冬,为冬季的开始,但在气象学上的入冬日有是严格定义的,即日平均气温连续五天低于10℃,才算是进入冬天,其中5天中的第一天即为入冬日。

日平均气温是指一天24小时的平均值,气象上通常用一天中的2时、8时、14时、20时4个时刻的气温的平均值作为这一天的日平均气温(即4个气温相加除以4),结果保留一位小数。

下表是长春市某年10月6日至10月12日的气温纪录及日平均气温(单位:℃)

时间

2时

8时

14时

20时

平均气温

10月6日

2

8

18

13

10.3

10月7日

2

7

15

10

a

10月8日

2

7

14

9

8.0

10月9日

2

6

13

9

7.5

10月10日

3

5

9

6

5.8

10月11日

2

5

13

9

7.3

10月12日

4

8

17

13

10.5

根据以上材料解答下列问题:

(1)求出10月7日的日平均气温a;
(2)采用适当的统计图将这7天的日平均气温的变化情况表示出来;
(3)请指出这一年的哪一天是长春市在气象学意义上的入冬日。
6、如图,△ABC是⊙O的内接三角形,∠ACB=45°,∠AOC=150°,过点C作⊙O的切线交AB的延长线于点D。


(1)求证:CD=CB。
(2)如果⊙O的半径为2,求AC的长。
7、定义:我们把三边比为1: 的三角称为尾翼三角形。

(1)请你在下面5×5和2×7的网格中分别画出面积最大的格点尾翼三角形。
(2)尾翼三角形的最大角为      度。
8、阅读下列材料,完成相应的任务。

数学活动课上,老师提出如下问题:

如图①,在四边形ABCD中,AB⊥BC,DC⊥BC,AB=2,DC=4,BC=8,点P为BC边上的动点,求当BP的值是多少时,AP+DP有最小值,最小值是多少。

小丽和小明对老师提出的问题进行了合作探究:

小丽:设BP=x,则CP=8-x,

根据勾股定理,可得AP+DP=

但没有办法继续求解。

小明:利用轴对称作图,如图②,

作点A关于直线BC的对称点A',连接A'D,与BC交于点P,

根据两点之间线段最短,将求AP+DP的最小值转化为求线段AD的长。

由△A‘BP∽△DCP,得

所以BP=

过点A'作A'H⊥DC,交DC的延长线于点H,

再由勾股定理,可得A'D= =10。

所以当BP= 时,AP+DP有最小值,最小值为10。

图③

任务:

(1)类比探究:

对于函数y= ,当x=      时,y有最小值,最小值为      

(2)应用拓展:如图③,若点D在BC上运动,AD上BC,AD=3,BC=5。连接AB,AC, 求△ABC周长的最小值。
9、综合与实践

(1)【动手操作】任意一个四边形ABCD通过剪裁,都可以拼接成一个三角形,方法如下:

如图1.点E、F、G、H分别是边AB、BC、CD、DA的中点.连结EH,点P是线段EH的中点,连结PF、PG.沿线段EH、PF,PG剪开,将四边形ABCD分成①、②、③、④四部分,按如图所示的方式即可拼成一个无缝隙也不重叠的三角形P'MN。

在拼接过程中用到的图形的变换有      

A.轴对称   B.平移  C.中心对称   D.位似

(2)【性质探究】如图3,连结EF'、F'G'、G'H,判断四边形EF'G'H的形状,并说明理由。
(3)【综合运用】若三角形P'MN是一个边长为4的正三角形,则四边形ABCD周长的最小值为      
10、如图①,在平面直角坐标系中,当线段AB与坐标轴不垂直时,以线段AB为斜边作Rt△ABC,且边BC⊥x轴,则称AC+BC的值为线段AB的直角距离,记作L(AB);当线段AB与坐标轴垂直时,线段AB的直角距离不存在。


(1)在平面直角坐标系中,A(1,4),B(4,2),求L(AB)。
(2)在平面直角坐标系中.点A与坐标原点重合.点B(x,y),且L(AB)=2。

①当点B(x:y)在第一象限时,易知AC=x,BC=y,由AC+BC=L(AB),可得y与x之间的函数关系式为      ,其中x的取值范围是      

(3)在图②中画出这个函数的图象。

②请模仿①的思考过程,分别探究点B在其它象限的情形,仍然在图②中分别画出点B在二、三、四象限时,y与x的函数图象。(不要求写出探究过程)

(4)在平面直角坐标系中,点A(1,1),点B在抛物线y=a(x-h)2+5上,且2≤L(AB)≤4。

①a= 时,直接写出h的取值范围。

②当h=0,且△ABC是等腰直角三角形时,直接写出a的取值范围。

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 吉林省长春市2020年中考数学二模考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;