辽宁省营口市2020年中考数学试卷

年级: 学科: 类型:中考真卷 来源:91题库

一、选择题(共10小题)

1、-6的绝对值是(  )
A . -6 B . 6 C . - D .
2、如图所示的几何体是由四个完全相同的小正方体搭成的,它的俯视图是(   )

A . B . C . D .
3、下列计算正确的是(   )
A . x2•x3=x6 B . xy2 xy2 xy2 C . (x+y)2=x2+y2 D . (2xy22=4xy4
4、如图,AB∥CD,∠EFD=64°,∠FEB的角平分线EG交CD于点G,则∠GEB的度数为(   )

A . 66° B . 56° C . 68° D . 58°
5、反比例函数y= (x<0)的图象位于(   )
A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限
6、如图,在△ABC中,DE∥AB,且 ,则 的值为(   )

A . B . C . D .
7、如图,AB为⊙O的直径,点C,点D是⊙O上的两点,连接CA,CD,AD.若∠CAB=40°,则∠ADC的度数是(   )

A . 110° B . 130° C . 140° D . 160°
8、一元二次方程x2﹣5x+6=0的解为(   )
A . x1=2,x2=﹣3 B . x1=﹣2,x2=3 C . x1=﹣2,x2=﹣3 D . x1=2,x2=3
9、某射击运动员在同一条件下的射击成绩记录如下:

射击次数

20

80

100

200

400

1000

“射中九环以上”的次数

18

68

82

168

327

823

“射中九环以上”的频率(结果保留两位小数)

0.90

0.85

0.82

0.84

0.82

0.82

根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是(   )

A . 0.90 B . 0.82 C . 0.85 D . 0.84
10、如图,在平面直角坐标系中,△OAB的边OA在x轴正半轴上,其中∠OAB=90°,AO=AB,点C为斜边OB的中点,反比例函数y= (k>0,x>0)的图象过点C且交线段AB于点D,连接CD,OD,若SOCD ,则k的值为(   )

A . 3 B . C . 2 D . 1

二、填空题(共8小题)

1、ax2﹣2axy+ay2      .
2、长江的流域面积大约是1800000平方千米,1800000用科学记数法表示为      .
3、(3 + )(3 )=      .
4、从甲、乙、丙三人中选拔一人参加职业技能大赛,经过几轮初赛选拔,他们的平均成绩都是87.9分,方差分别是S2=3.83,S2=2.71,S2=1.52.若选取成绩稳定的一人参加比赛,你认为适合参加比赛的选手是      .
5、一个圆锥的底面半径为3,高为4,则此圆锥的侧面积为      .
6、如图,在菱形ABCD中,对角线AC,BD交于点O,其中OA=1,OB=2,则菱形ABCD的面积为      .

7、如图,△ABC为等边三角形,边长为6,AD⊥BC,垂足为点D,点E和点F分别是线段AD和AB上的两个动点,连接CE,EF,则CE+EF的最小值为      .

8、如图,∠MON=60°,点A1在射线ON上,且OA1=1,过点A1作A1B1⊥ON交射线OM于点B1 , 在射线ON上截取A1A2 , 使得A1A2=A1B1;过点A2作A2B2⊥ON交射线OM于点B2 , 在射线ON上截取A2A3 , 使得A2A3=A2B2;…;按照此规律进行下去,则A2020B2020长为      .

三、解答题(共8小题)

1、先化简,再求值:( ﹣x)÷ ,请在0≤x≤2的范围内选一个合适的整数代入求值.
2、随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.
(1)李老师被分配到“洗手监督岗”的概率为       
(2)用列表法或面树状图法,求李老师和王老师被分配到同一个监督岗的概率.
3、“生活垃圾分类”逐渐成为社会生活新风尚,某学校为了了解学生对“生活垃圾分类”的看法,随机调查了200名学生(每名学生必须选择且只能选择一类看法),调查结果分为“A.很有必要”“B.有必要”“C.无所谓”“D.没有必要”四类.并根据调查结果绘制了图1和图2两幅统计图(均不完整),请根据图中提供的信息,解答下列问题:

(1)补全条形统计图;
(2)扇形统计图中“D.没有必要”所在扇形的圆心角度数为      
(3)该校共有2500名学生,根据调查结果估计该校对“生活垃圾分类”认为“A.很有必要”的学生人数.
4、如图,海中有一个小岛A,它周围10海里内有暗礁,渔船跟踪鱼群由东向西航行,在B点测得小岛A在北偏西60°方向上,航行12海里到达C点,这时测得小岛A在北偏西30°方向上,如果渔船不改变方向继续向西航行,有没有触礁的危险?并说明理由.(参考数据: ≈1.73)

5、如图,△ABC中,∠ACB=90°,BO为△ABC的角平分线,以点O为圆心,OC为半径作⊙O与线段AC交于点D.

(1)求证:AB为⊙O的切线;
(2)若tanA= ,AD=2,求BO的长.
6、某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).
(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为多少元?
7、如图,在矩形ABCD中,AD=kAB(k>0),点E是线段CB延长线上的一个动点,连接AE,过点A作AF⊥AE交射线DC于点F.

(1)如图1,若k=1,则AF与AE之间的数量关系是      
(2)如图2,若k≠1,试判断AF与AE之间的数量关系,写出结论并证明;(用含k的式子表示)
(3)若AD=2AB=4,连接BD交AF于点G,连接EG,当CF=1时,求EG的长.
8、在平面直角坐标系中,抛物线y=ax2+bx﹣3过点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D.

(1)求抛物线的解析式;
(2)点P为直线CD上的一个动点,连接BC;

①如图1,是否存在点P,使∠PBC=∠BCO?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由;

②如图2,点P在x轴上方,连接PA交抛物线于点N,∠PAB=∠BCO,点M在第三象限抛物线上,连接MN,当∠ANM=45°时,请直接写出点M的坐标.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 辽宁省营口市2020年中考数学试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;