浙江省衢州市2021年中考数学试卷

年级: 学科: 类型:中考真卷 来源:91题库

一、单选题(共10小题)

1、如图是由四个相同的小正方体搭成的立体图形,它的主视图是(   )


A . B . C . D .
2、21的相反数是(   )
A .   21 B . -21 C . - D .
3、2021年5月国家统计局公布了第七次人口普查结果,我国人口数约为1412000000,其中数据1412000000用科学记数法表示为(   )
A . B . C . D .
4、下列计算正确的是(   )
A . B . C . D .
5、一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸出1个球,摸到白球的概率是(   )
A . B . C . D .
6、已知扇形的半径为6,圆心角为 .则它的面积是(   )
A . B . C . D .
7、如图,在 中, ,点D,E,F分别是AB,BC,CA的中点,连结DE,EF,则四边形ADEF的周长为(   )

A . 6 B . 9 C . 12 D . 15
8、《九章算术》是中国传统数学的重要著作,书中有一道题“今有五雀六燕,集称之衡,雀俱重,燕俱轻;一雀一燕交而处,衡适平;并燕雀重一斤.问:燕雀一枚,各重几何?”译文:”五只雀、六只燕,共重1斤(占时1斤=16两).雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕重量各为多少?”设雀重x两,燕重y两,可列出方程组(   )
A . B . C . D .
9、如图.将菱形ABCD绕点A逆时针旋转 得到菱形 .当AC平分 时, 满足的数量关系是(   )

A . B . C . D .
10、已知A,B两地相距60km,甲、乙两人沿同一条公路从A地出发到B地,甲骑自行车匀速行驶3h到达,乙骑摩托车.比甲迟1h出发,行至30km处追上甲,停留半小时后继续以原速行驶.他们离开A地的路程y与甲行驶时间x的函数图象如图所示.当乙再次追上甲时距离B地( )

A . 15km B . 16km C . 44km D . 45km

二、填空题(共6小题)

1、若 有意义,则x的值可以是      .(写出一个即可)
2、不等式 的解为      .
3、为庆祝建党100周年,某校举行“庆百年红歌大赛”.七年级5个班得分分别为85,90,88,95,92,则5个班得分的中位数为      分.
4、如图,在正五边形ABCDE中,连结AC,BD交于点F,则 的度数为      .

5、将一副三角板如图放置在平面直角坐标系中,顶点A与原点O重合,AB在x轴正半轴上,且 ,点E在AD上, ,将这副三角板整体向右平移      个单位,C,E两点同时落在反比例函数 的图象上.

6、图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE与地面平行,支撑杆AD,BC可绕连接点O转动,且 ,椅面底部有一根可以绕点H转动的连杆HD,点H是CD的中点,FA,EB均与地面垂直,测得 .

(1)椅面CE的长度为      cm.
(2)如图3,椅子折叠时,连杆HD绕着支点H带动支撑杆AD,BC转动合拢,椅面和连杆夹角 的度数达到最小值 时,A,B两点间的距离为      cm(结果精确到0.1cm).(参考数据:

三、解答题(共8小题)

1、计算: .
2、先化简,再求值: ,其中 .
3、如图,在 的网格中, 的三个顶点都在格点上.

(1)在图1中画出 ,使 全等,顶点D在格点上.
(2)在图2中过点B画出平分 面积的直线l.
4、为进一步做好“光盘行动”,某校食堂推出“半份菜”服务,在试行阶段,食堂对师生满意度进行抽样调查.并将结果绘制成如下统计图(不完整).

(1)求被调查的师生人数,并补全条形统计图,
(2)求扇形统计图中表示“满意”的扇形圆心角度数.
(3)若该校共有师生1800名,根据抽样结果,试估计该校对食堂“半份菜”服务“很满意”或“满意”的师生总人数.
5、如图,在 中, ,BC与 相切于点D,过点A作AC的垂线交CB的延长线于点E,交 于点F,连结BF.

(1)求证:BF是 的切线.
(2)若 ,求EF的长.
6、如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.

(1)求桥拱项部O离水面的距离.
(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.

①求出其中一条钢缆抛物线的函数表达式.

②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.

7、如图1,点C是半圆O的直径AB上一动点(不包括端点), ,过点C作 交半圆于点D,连结AD,过点C作 交半圆于点E,连结EB.牛牛想探究在点C运动过程中EC与EB的大小关系.他根据学习函数的经验,记 .请你一起参与探究函数 随自变量x变化的规律.

通过几何画板取点、画图、测量,得出如下几组对应值,并在图2中描出了以各对对应值为坐标的点,画出了不完整图象.

x 0.30 0.80 1.60 2.40 3.20 4.00 4.80 5.60
2.01 2.98 3.46 3.33 2.83 2.11 1.27 0.38
5.60 4.95 3.95 2.96 2.06 1.24 0.57 0.10

(1)当 时,       .
(2)在图2中画出函数 的图象,并结合图象判断函数值 的大小关系.
(3)由(2)知“AC取某值时,有 ”.如图3,牛牛连结了OE,尝试通过计算EC,EB的长来验证这一结论,请你完成计算过程.
8、如图,

(1)【推理】
如图1,在正方形ABCD中,点E是CD上一动点,将正方形沿着BE折叠,点C落在点F处,连结BE,CF,延长CF交AD于点G.

求证: .
(2)【运用】
如图2,在(推理)条件下,延长BF交AD于点H.若 ,求线段DE的长.
(3)【拓展】
将正方形改成矩形,同样沿着BE折叠,连结CF,延长CF,BF交直线AD于G,两点,若 ,求 的值(用含k的代数式表示).
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 浙江省衢州市2021年中考数学试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;