2016-2017学年江西省赣州市潭东中学九年级上学期期中数学试卷

年级:九年级 学科:数学 类型:期中考试 来源:91题库

一、选择题 (共5小题)

1、关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值是(  )


A . ﹣1 B . 1 C . 1或﹣1 D . ﹣1或0
2、下列图形既是轴对称图形又是中心对称图形的是(   )
A . B . C . D .
3、已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为(   )

A . 6 B . 8 C . 10 D . 12
4、图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是(   )

A . y=﹣2x2 B . y=2x2 C . y=﹣ x2 D . y= x2
5、如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣ ),( )是抛物线上两点,则y1<y2其中结论正确的是(   )

A . ①② B . ②③ C . ②④ D . ①③④

二、填空题 (共6小题)

1、关于x的一元二次方程x2+(2a﹣1)x+5﹣a=ax+1的一次项系数为4,则常数项为:      

2、已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=      
3、抛物线y=2x2+3x﹣1向右平移2个单位,再向上平移3个单位,得到新的抛物线解析式是      
4、如图,已知A,B两点的坐标分别为(2 ,0),(0,10),M是△AOB外接圆⊙C上的一点,且∠AOM=30°,则点M的坐标为      

5、如图,在Rt△ABC中,∠ABC=90°,AB=BC=2 ,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BE,则BE的长是      

6、自主学习,请阅读下列解题过程.

解一元二次不等式:x2﹣5x>0.

解:设x2﹣5x=0,解得:x1=0,x2=5,则抛物线y=x2﹣5x与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=x2﹣5x的大致图象(如图所示),由图象可知:当x<0,或x>5时函数图象位于x轴上方,此时y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集为:x<0或x>5.

通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:

(1)上述解题过程中,渗透了下列数学思想中的            .(只填序号)

①转化思想     ②分类讨论思想    ③数形结合思想

(2)一元二次不等式x2﹣5x<0的解集为      
(3)用类似的方法写出一元二次不等式的解集:x2﹣2x﹣3>0.      

三、计算题 (共4小题)

1、解方程:
(1)x2﹣2x﹣2=0;
(2)(x﹣2)2﹣3(x﹣2)=0.
2、先化简,再求值:( )÷ ,其中,a是方程x2+3x+1=0的根.
3、如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.

(1)若CD=16,BE=4,求⊙O的直径;
(2)若∠M=∠D,求∠D的度数.
4、已知关于x的方程x2+ax+a﹣2=0
(1)若该方程的一个根为1,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.

四、作图题 (共1小题)

1、如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1 . 画出△ABC关于点A1的中心对称图形.

五、解答题 (共6小题)

1、已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1 , x2
(1)求m的取值范围;
(2)当x12+x22=6x1x2时,求m的值.
2、某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)请直接写出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
3、把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点C顺时针旋转a角,旋转后的矩形记为矩形EDCF.在旋转过程中,

(1)如图①,当点E在射线CB上时,E点坐标为      

(2)当△CBD是等边三角形时,旋转角a的度数是      (a为锐角时);

(3)如图②,设EF与BC交于点G,当EG=CG时,求点G的坐标;

(4)如图③,当旋转角a=90°时,请判断矩形EDCF的对称中心H是否在以C为顶点,且经过点A的抛物线上.

4、解答
(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.

(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由.

(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=3 ,求AG,MN的长.

5、

如图1,已知一次函数y=x+3的图象与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c过A,B两点,且与x轴交于另一点C.

(1)求b、c的值;

(2)

如图1,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;

(3)

将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P为△ACG内一点,连接PA,PC,PG,分别以AP,AG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR

①求证:PG=RQ;

②求PA+PC+PG的最小值,并求出当PA+PC+PG取得最小值时点P的坐标.

6、如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).

(1)求抛物线的函数表达式;

(2)若点P在抛物线上,且SAOP=4SBOC , 求点P的坐标;

(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值

六、附加题 (共2小题)

1、

如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.

(1)求证:AC垂直平分EF;

(2)试判断△PDQ的形状,并加以证明;

(3)

如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.

2、如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动.设动点运动时间为t秒.

(1)求AD的长;
(2)当△PDC的面积为15平方厘米时,求t的值;
(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在t,使得SPMD= SABC?若存在,请求出t的值;若不存在,请说明理由.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2016-2017学年江西省赣州市潭东中学九年级上学期期中数学试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;