2016-2017学年江西省宜春三中九年级上学期期中数学试卷

年级:九年级 学科:数学 类型:期中考试 来源:91题库

一、选择题(共6小题)

1、根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围是(  )

x

3.23

3.24

3.25

3.26

ax2+bx+c

﹣0.06

﹣0.02

0.03

0.09

A . 3<x<3.23 B . 3.23<x<3.24        C . 3.24<x<3.25 D . 3.25<x<3.26
2、一元二次方程x2﹣1=0的根是(  )

A . 1 B . ﹣1 C . D . ±1
3、下列安全标志图中,是中心对称图形的是(   )

A . B . C . D .
4、用配方法解方程x2+8x﹣9=0时,此方程可变形为(   )
A . (x+4)2=7 B . (x+4)2=25 C . (x+4)2=9 D . (x+4)2=﹣7
5、将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为(   )
A . y=3(x﹣2)2﹣1 B . y=3(x﹣2)2+1 C . y=3(x+2)2﹣1 D . y=3(x+2)2+1
6、如图,把菱形ABOC绕点O顺时针旋转得到菱形DFOE,则下列角中不是旋转角的为(   )

A . ∠BOF B . ∠AOD C . ∠COE D . ∠COF

二、填空题(共6小题)

1、若x=2是一元二次方程x2﹣2a=0的一个根,则a=      
2、在直角坐标系中,点A(1,﹣2)关于原点对称的点的坐标是      
3、抛物线y=x2﹣2x﹣8与x轴的交点坐标是      
4、将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD=110°,则∠COB=      度.

5、如图所示,在直角坐标系中,△A′B′C′是由△ABC绕点P旋转一定的角度而得,其中A(1,4),B(0,2),C(3,0),则旋转中心点P的坐标是      

6、如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是      

三、解答题(共11小题)

1、解方程:2x2﹣4x+1=0.
2、已知抛物线l1的最高点为P(3,4),且经过点A(0,1),求l1的解析式.
3、随着市民环保意识的增强,烟花爆竹销售量逐年下降.常德市2012年销售烟花爆竹20万箱,到2014年烟花爆竹销售量为9.8万箱.求常德市2012年到2014年烟花爆竹年销售量的平均下降率.
4、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,该抛物线与x轴的一个交点为(﹣1,0),请回答以下问题.

(1)求抛物线与x轴的另一个交点坐标      
(2)一元二次方程ax2+bx+c=0(a≠0)的解为      
(3)不等式ax2+bx+c<0(a≠0)的解集是      
5、如图,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:

(1)旋转中心是点      ,旋转的最小角度是      
(2)AC与EF的位置关系如何,并说明理由.
6、已知关于x的一元二次方程kx2﹣2x+1=0.
(1)若此一元二次方程有实数根,求k的取值范围.
(2)选一个你认为合适的整数k代入原方程,并解此方程.
7、如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,

(1)①画出△ABC关于x轴对称的△A1B1C1

②画出△ABC绕原点O旋转180°后的△A2B2C2 , 并写出A2、B2、C2的坐标

(2)假设每个正方形网格的边长为1,求△A1B1C1的面积.
8、已知二次函数y=2x2+bx﹣1.
(1)若两点P(﹣3,m)和Q(1,m)在该函数图象上.求b、m的值;
(2)设该函数的顶点为点B,求出点B 的坐标并求三角形BPQ的面积.
9、某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.
(1)求出每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式;并写出自变量的取值范围
(2)商场的营销部在调控价格方面,提出了A,B两种营销方案.

方案A:每件商品涨价不超过11元;

方案B:每件商品的利润至少为16元.

请比较哪种方案的最大利润更高,并说明理由.

10、如图,平行四边形ABCD中,AB⊥AC,AB=1,BC= .对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.

(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试说明在旋转过程中,线段AF与EC总保持相等;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.
11、如图,抛物线y=﹣x2+mx+n与x轴交于A,B两点,y与轴交于点C,抛物线的对称轴交x轴于点D.已知A(﹣1,0),C(0,3)

(1)求抛物线的解析式;

(2)在抛物线的对称轴上是否存在P点,使△PCD是以CD为腰的等腰三角形,如果存在,直接写出点P的坐标,如果不存在,请说明理由;

(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,

①求直线BC 的解析式;

②当点E运动到什么位置时,四边形CDBF的面积最大?求四边形CDBF的最大面积及此时点E的坐标.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2016-2017学年江西省宜春三中九年级上学期期中数学试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;