2016-2017学年江苏省无锡市江阴市四校联考高一上学期期中数学试卷
年级:高一 学科:数学 类型:期中考试 来源:91题库
一、填空题(共14小题)
1、设集合M={m|﹣3<m<2},N={n|﹣1<n≤3,n∈N},则M∩N= .
2、幂函数y=f(x)的图象经过点(8,2),则此幂函数的解析式为f(x)= .
3、设函数f(x)=(x﹣4)0+
,则函数f(x)的定义域为 .

4、函数y=loga(x﹣1)+2(a>0且a≠1)恒过定点 .
5、关于x的不等式ax2+bx+c>0的解集为(﹣1,3),则关于x的不等式ax2﹣bx+c>0的解集为 .
6、已知函数f(x)=ax3﹣
+2,若f(﹣2)=1,则f(2)= .

7、若m∈(0,1),a=3m , b=log3m,c=m3则用“>”将a,b,c按从大到小可排列为
8、函数f(x)=mx2﹣2x+3在[﹣1,+∞)上递减,则实数m的取值范围 .
9、已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(x2﹣2)<f(2),则实数x的取值范围 .
10、已知函数f(x)=log3x+x﹣5的零点x0∈[a,b],且b﹣a=1,a,b∈N* , 则a+b= .
11、函数
的单调增区间为

12、已知函数f(x)=
满足对任意的x1≠x2 , 都有[f(x1)﹣f(x2)](x1﹣x2)<0成立,则a的取值范围是 .

13、若关于x的方程log
|x+a|=|2x﹣1|有两个不同的负数解,则实数a的取值范围是 .

14、若已知f(ex+
)=e2x+
,关于x的不等式f(x)+m
≥0恒成立,则实数m的取值范围是



二、解答题(共6小题)
1、已知集合A={x|
>0},集合B={x|y=lg(﹣x2+3x+28)},集合C={x|m+1≤x≤2m﹣1}.

(1)求(∁RA)∩B;
(2)若B∪C=B,求实数m的取值范围.
2、已知A={x|(2x)2﹣6•2x+8≤0},函数f(x)=log2x(x∈A).
(1)求函数f(x)的定义域;
(2)若函数h(x)=[f(x)]2﹣log2(2x),求函数h(x)的值域.
3、甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)(万元)满足R(x)=
,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:

(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);
(2)要使甲厂有盈利,求产量x的范围;
(3)甲厂生产多少台产品时,可使盈利最多?
4、已知函数f(x)=a﹣
为奇函数.

(1)求a的值;
(2)试判断函数f(x)在(﹣∞,+∞)上的单调性,并证明你的结论;
(3)若对任意的t∈R,不等式f[t2﹣(m﹣2)t]+f(t2﹣m+1)>0恒成立,求实数m的取值范围.
5、已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;
(3)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.
6、对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:
①f(x)在[m,n]内是单调函数;
②当定义域是[m,n]时,f(x)的值域也是[m,n].
则称[m,n]是该函数的“和谐区间”.
(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.
(2)求证:函数
不存在“和谐区间”.

(3)已知:函数
(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.
