2022年高考数学二轮复习 解答题型 24 数列解答题型猜想

年级: 学科: 类型: 来源:91题库

一、解答题(共15小题)

1、已知等差数列满足.
(1)求的通项公式;
(2)等比数列的前项和为 , 且 , 再从下面①②③中选取两个作为条件,求满足的最大值.

;②;③.

(注:若选择不同的组合分别解答,则按第一个解答计分.)

2、在各项都为正数的等比数列中,已知 , 其前项的积为 , 且是数列的前项和,且.
(1)求数列的通项公式;
(2)求数列的前项和.
3、已知有穷数列的各项均不相等,将的项从大到小重新排序后相应的项数构成新数列 , 称的“序数列”.例如,数列满足 , 则其“序数列”为1、3、2,若两个不同数列的“序数列”相同,则称这两个数列互为“保序数列”.
(1)若数列的“序数列”为2、3、1,求实数x的取值范围;
(2)若项数均为2021的数列互为“保序数列”,其通项公式分别为(t为常数),求实数t的取值范围;
(3)设 , 其中p、q是实常数,且 , 记数列的前n项和为 , 若当正整数时,数列的前k项与数列的前k项(都按原来的顺序)总是互为“保序数列”,求p、q满足的条件.
4、设为常数,若存在大于1的整数 , 使得无穷数列满足 , 则称数列为“数列”.
(1)设 , 若首项为1的数列为“(3)数列”,求
(2)若首项为1的等比数列为“数列”,求数列的通项公式,并指出相应的的值;
(3)设 , 若首项为1的数列为“数列”,求数列的前项和.
5、已知数列的前项和为 , 且满足.
(1)求的值及数列的通项公式;
(2)若 , 数列的前项和为 , 求证:.
6、已知正项等比数列的前n项和为 , 且
(1)求数列的通项公式;
(2)数列满足 , 当时, , 求数列的前n项和
7、在数列中, , 且数列是公差为2的等差数列.
(1)求的通项公式;
(2)设 , 求数列的前项和.
8、在等差数列 中,已知公差 ,且 成等比数列.
(1)求数列 的通项公式
(2)求 的值.
9、已知正项数列的前n项和为 , 且
(1)求数列的通项公式;
(2)若数列满足 , 求数列的前n项和
10、已知等差数列 , 若存在有穷等比数列 , 其中 , 公比为 , 满足 , 其中 , 则称数列为数列的长度为的“等比伴随数列”.
(1)数列的通项公式为 , 写出数列的一个长度为的“等比伴随数列”;
(2)等差数列的公差为 , 若存在长度为的“等比伴随数列” , 其中 , 求的最大值;
(3)数列的通项公式为 , 数列为数列的长度为的“等比伴随数列”,求的最大值.
11、已知数列的前项和 , 且
(1)证明:数列为等差数列;
(2)设 , 记数列的前项和为 , 若 , 对任意恒成立,求实数的取值范围.
12、已知是等差数列,且;数列满足:

(Ⅰ)求数列的通项公式;

(Ⅱ)设数列的前项和为 , 若 , 求的最大值.

13、已知等比数列满足的等差中项.
(1)求数列的通项公式;
(2)记 , 求数列的前项和.
14、已知数列的前n项和为 , 且.
(1)证明:是等比数列,并求的通项公式;
(2)在①;②;③这三个条件中任选一个补充在下面横线上,并加以解答.

已知数列满足_______,求的前n项和.

注:如果选择多个方案分别解答,按第一个方案解答计分.

15、已知数列的前n项和为 , 且满足
(1)证明:数列为等比数列;
(2)设 , 数列的前n项和为 , 证明:
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2022年高考数学二轮复习 解答题型 24 数列解答题型猜想

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;