广东省佛山市顺德区2021届高三下学期数学仿真考试试卷

年级: 学科: 类型: 来源:91题库

一、单选题(共8小题)

1、已知集合 ,则 (    )
A . B . C . D .
2、已知复数 ,则 的值为(    )
A . B . 2 C . D . 3
3、已知向量 ,且 ,则 的值为(    )
A . B . C . -6 D . 6
4、“中国天眼”历时22年建成,是具有我国自主知识产权,世界最大单口径(球冠底面直径500米)、最灵敏的球面射电望远镜,其形状可近似地看成一个球冠(球面被平面所截得的一部分叫做球冠,如图所示,截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.球面的半径是R , 球冠的高是h , 那么球冠的表面积公式为: ).已知天眼的反射面总面积(球冠面积)约为25万平方米,则天眼的球冠高度约为( )

A . 60米 B . 100米 C . 130米 D . 160米
5、已知角 的顶点与原点重合,始边与x轴的非负半轴重合,终边在直线 上,则 (    )
A . B . C . D .
6、射击运动中,一次射击最多能得10环,下图统计了某射击运动员50次射击命中环数不少于8环的频数,用频率估计概率,则该运动员在3次独立的射击中,总环数不少于28环的概率是(    )

A . B . C . D .
7、已知抛物线 ,直线 C相交于AB两点,若 中点的横坐标为2,则抛物线C的焦点与准线的距离为(    )
A . 2 B . 4 C . 6 D . 8
8、函数 在区间 上的所有零点之和为(    )
A . 0 B . C . D .

二、多选题(共4小题)

1、企业的核心竞争力需要大量研发投入和研发活动作为支撑.研发营收比是指企业的研发投入与营业收入的比值,是一个企业研发投入情况的一项重要指标.下图是某公司2014年到2020年的研发投入和研发营收比的情况,则下列结论正确的是(    )

A . 该公司的研发投入逐年增加. B . 该公司2020年的营业收入超过550亿元. C . 2017年该公司的研发营收比最大. D . 2017年该公司的营业收入达到最大值.
2、已知双曲线 的左右焦点分别为 ,点PC上的一点,且 ,则下列说法正确的是(    )
A . 双曲线的离心率为 B . 双曲线的渐近线方程为 C . 的周长为30 D . P在椭圆
3、已知函数 ,且 ,则下列说法正确的是(    )
A . 的最小正周期为 B . C . 图像向左平移 个单位得到一个偶函数 D . 上单调
4、已知 ,则下列结论一定正确的是(    )
A . B . C . D .

三、填空题(共4小题)

1、 的展开式中 的系数
2、已知数列 的通项公式为 ,前n项和为 ,则当 取得最小值时n的值为
3、已知函数 的图象是经过原点的曲线(非直线),且在原点处的切线方程为 ,请写出一个符合条件函数 的解析式
4、中国古代数学名著《九章算术》中记载:“刍甍(chú méng)者,下有袤有广,而上有袤无广,刍,草也.甍,屋盖也.”其释义为:刍甍,底面有长有宽的矩形,顶部只有长没有宽为一条棱的五面体.刍甍字面意思为茅屋屋顶.如图所示,现有刍甍 ,所有顶点都在球O的球面上,球心O在矩形 所在的平面内, ,该刍甍的体积最大时, ,体积的最大值为

四、解答题(共6小题)

1、 的内角ABC的对边分别为abc , 已知

(Ⅰ)若 ,求 的值;

(Ⅱ)若 ,证明 为等边三角形.

2、已知数列 的前n项和为 ,再从条件①、条件②这两个条件中选择一个作为已知,
(1)求数列 的通项公式:
(2)若数列 满足 ,求数列 的前100项和

条件①: ;条件②: 成等比数列;

注:如果选择多个条件分别解答,按第一个解答计分.

3、十四五发展纲要提出要推进能源革命,建设清洁低碳、安全高效的能源体系,加快发展非化石能源,大力提升风电、光伏发展规模,有序发展海上风电.海上风电相比与陆上风电有着一定的优势,海上风电可装的风机更大,风资源利用率更高,近几年我国海上风电事业发展良好.下面是近五年我国海上风电发展情况表和对应的散点图.

2016-2020年中国海上风电新增装机容量及累计装机容量表(单位:万千瓦)

年份

2016

2017

2018

2019

2020

年份代号t

1

2

3

4

5

新增装机容量u

31

69

140

219

306

累计装机容量v

104

173

313

532

838

(1)为了分析中国海上风电装机容量的情况,建立了 两个线性回归模型,你认为用哪个线性回归模型更可靠?并说明理由.
(2)根据(1)的判断结果及表中数据,求出回归方程,并根据这个回归模型回答下列问题:

①2021年我国海上风电新增装机容量的预测值是多少?

②预计至少要到哪一年,我国海上风电累计装机容量超过2000万千瓦?

参考数据:

765

2995

1960

7707

参考公式:回归方程

4、在正三棱柱 中,已知 MN分别为 的中点,P为线段 上一点.平面 与平面 的交线为l

(Ⅰ)是否存在点P使得 平面 ?若存在,请指出点P的位置并证明;若不存在,请说明理由.

(Ⅱ)若 ,求二面角 的余弦值.

5、已知函数
(1)求函数 的单调区间.
(2)当 时, 恒成立,求a的取值范围.
6、已知椭圆 的离心率为 ,且过点 ,直线l与椭圆相交于MN两点,过点 的直线 分别与椭圆相交于另外两点AB , 且直线 的斜率为2.

(Ⅰ)求椭圆C的方程.

(Ⅱ)求证:直线l恒过定点.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 广东省佛山市顺德区2021届高三下学期数学仿真考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;