上海市静安区2021届高三上学期数学一模试卷

年级: 学科: 类型: 来源:91题库

一、填空题(共8小题)

1、 的展开式中的常数项是      .
2、已知 ,命题:若 ,则 的逆否命题是
3、如图所示,弧长为 ,半径为1的扇形(及其内部)绕 所在的直线旋转一周,所形成的几何体的表面积为.

4、设 是虚数单位,复数 为纯虚数,则实数
5、在△ABC中,AB=2,AC=1,D为BC的中点,则 .
6、某校的“希望工程”募捐小组在假期中进行了一次募捐活动.他们第一天得到15元,从第二天起,每一天收到的捐款数都比前一天多10元.要募捐到不少于1100元,这次募捐活动至少需要天.(结果取整)
7、某校开设9门选修课程,其中ABC三门课程由于上课时间相同,至多选一门,若规定每位学生选修4门,则一共有种不同的选修方案.
8、如图所示,在平面直角坐标系 中,动点 以每秒 的角速度从点 出发,沿半径为2的上半圆逆时针移动到 ,再以每秒 的角速度从点 沿半径为1的下半圆逆时针移动到坐标原点 ,则上述过程中动点 的纵坐标 关于时间 的函数表达式为.

二、单选题(共3小题)

1、若 ,则下面不等式中成立的一个是(    ).
A . B . C . D .
2、下列四个选项中正确的是(    )
A . 关于 的方程 ( )的曲线是圆 B . 设复数 是两个不同的复数,实数 ,则关于复数 的方程 的所有解在复平面上所对应的点的轨迹是椭圆 C . 为两个不同的定点, 为非零常数,若 ,则动点 的轨迹为双曲线的一支 D . 双曲线 与椭圆 有相同的焦点
3、在平面直角坐标系 中, 是位于不同象限的任意角,它们的终边交单位圆(圆心在坐标原点 )于AB两点.若AB两点的纵坐标分别为正数ab , 且 ,则a+b的最大值为( )
A . 1 B . C . 2 D . 不存在

三、解答题(共5小题)

1、如图所示,等腰梯形 是由正方形 和两个全等的RtFCBRtEDA组成, .现将RtFCB沿BC所在的直线折起,点 移至点 ,使二面角 的大小为 .

(1)求四棱锥 的体积;
(2)求异面直线 所成角的大小.
2、设 ,其中常数 .
(1)设 ,求函数 ( )的反函数;
(2)求证:当且仅当 时,函数 为奇函数.
3、如图所示,在河对岸有两座垂直于地面的高塔 .张明在只有量角器(可以测量从测量人出发的两条射线的夹角)和直尺(可测量步行可抵达的两点之间的直线距离)的条件下,为了计算塔 的高度,他在点A测得点 的仰角为 ,又选择了相距100米的 点,测得 .

(1)请你根据张明的测量数据求出塔 高度;
(2)在完成(1)的任务后,张明测得 ,并且又选择性地测量了两个角的大小(设为 ).据此,他计算出了两塔顶之间的距离 .

请问:①张明又测量了哪两个角?(写出一种测量方案即可)

②他是如何用 表示出 的?(写出过程和结论)

4、 个正数排成 列方阵,其中每一行从左至右成等差数列,每一列从上至下都是公比为同一个实数 的等比数列.

已知 .

(1)设 ,求数列 的通项公式;
(2)设 ,求证: ( );
(3)设 ,请用数学归纳法证明: .
5、如图所示,定点 到定直线 的距离 .动点 到定点 的距离等于它到定直线 距离的2倍.设动点 的轨迹是曲线 .

(1)请以线段 所在的直线为 轴,以线段 上的某一点为坐标原点 ,建立适当的平面直角坐标系 ,使得曲线 经过坐标原点 ,并求曲线 的方程;
(2)请指出(1)中的曲线 的如下两个性质:①范围;②对称性.并选择其一给予证明.
(3)设(1)中的曲线 除了经过坐标原点 ,还与 轴交于另一点 ,经过点 的直线 交曲线 两点,求证: .
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 上海市静安区2021届高三上学期数学一模试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;