山东省潍坊市2019-2020学年高二下学期数学期中考试试卷

年级: 学科: 类型:期中考试 来源:91题库

一、单选题(共8小题)

1、若函数 在区间 内可导,且 ,则 的值为( )
A . B . C . D .
2、如图, 是可导函数,直线 是曲线 处的切线,令 的导函数,则 (    ).

图片_x0020_100001

 

A . -1  B . 0 C . 2 D . 4
3、若复数 满足 ,则复数 的虚部为(   )
A . -2 B . -1 C . 1 D . 2.
4、已知随机变量 ,若 ,则实数n的值为(    )
A . 4 B . 6 C . 8 D . 24
5、有8件产品,其中4件是次品,从中有放回地取3次(每次1件),若X表示取得次品的次数,则 (   )
A . B . C . D .
6、同时抛掷一颗红骰子和一颗蓝骰子,观察向上的点数,记“红骰子向上的点数小于4”为事件 ,“两颗骰子的点数之和等于7”为事件 ,则 (    )
A . B . C . D .
7、已知 (    )
A . -1 B . 0 C . 1 D . 2
8、函数 上单调递增,则实数a的取值范围是(    )
A . B . C . D .

二、多选题(共4小题)

1、以下为真命题的是(    )
A . 纯虚数 的共轭复数等于 B . ,则 C . ,则 互为共轭复数 D . ,则 互为共轭复数
2、设离散型随机变量 的分布列为

0

1

2

4

5

0.3

0.2

0.2

0.1

若离散型随机变量 满足 ,则下列结果正确的有(    )

A . B . C . D .
3、如图是 的导函数 的图象,则下列判断正确的是(    )

A . 在区间 上是增函数 B . 的极小值点 C . 在区间 上是增函数,在区间 上是减函数 D . 的极大值点
4、下列命题正确的是(    )
A . 已知随机变量X服从正态分布 ,且 ,则 B . 以模型 去拟合一组数据时,为了求出回归方程,设 ,将其变换后得到线性方程 ,则 C . 已知两个变量具有线性相关关系,其回归直线方程为 ,若 . ,则 D .

三、填空题(共4小题)

1、复数
2、在杨辉的《详解九章算法》中载有一个“开方作法本源”图,就是“杨辉三角”.我们可以从中发现下列的等式:

图片_x0020_100003

第1行:

第2行:

第3行:

第4行:

第5行:

那么由此可得,第2020行的等式等号右侧的数值为.(结果保留最简形式)

3、现随机安排甲、乙、丙3名志愿者为某学生辅导数学、物理、化学、生物4门学科,每名志愿者至少辅导1门学科,每门学科由1名志愿者辅导,则数学学科恰好由甲辅导的概率为
4、若点 是函数 的图象上任意两点,且函数 分别在点 和点 处的切线互相垂直,则 的最大值为 .

四、解答题(共6小题)

1、函数 在点 处的切线斜率为
(1)求实数a的值;
(2)求 的单调区间和极值.
2、若 展开式的二项式系数之和是64.
(1)求n的值;
(2)求展开式中的常数项.
3、第35届牡丹花会期间,我班有5名学生参加志愿者服务,服务场所是王城公园和牡丹公园.
(1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案?
(2)每名学生都被随机分配到其中的一个公园,设 分别表示5名学生分配到王城公园和牡丹公园的人数,记 ,求随机变量 的分布列和数学期望 .
4、“十三五”规划确定了到2020年消除贫困的宏伟目标,打响了精准扶贫的攻坚战,为完成脱贫任务,某单位在甲地成立了一家医疗器械公司吸纳附近贫困村民就工,已知该公司生产某种型号医疗器械的月固定成本为20万元,每生产1千件需另投入5.4万元,设该公司一月内生产该型号医疗器械x千件且能全部销售完,每千件的销售收入为 万元,已知
(1)请写出月利润y(万元)关于月产量x(千件)的函数解析式;
(2)月产量为多少千件时,该公司在这一型号医疗器械的生产中所获月利润最大?并求出最大月利润(精确到0.1万元).
5、《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年高考总成绩由语数外三门统考科目和物理、化学等六门选考科目组成,将每门选考科目的考生原始成绩从高到低划分为 共8个等级,参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%,选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到 八个分数区间,得到考生的等级成绩.某市高一学生共6000人,为给高一学生合理选科提供依据,对六门选考科目进行测试,其中化学考试原始成绩 大致服从正态分布
(1)求该市化学原始成绩在区间 的人数;
(2)以各等级人数所占比例作为各分数区间发生的概率,按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间 的人数,求

(附:若随机变量 ,则

6、函数 (a为常数,且 )在 处取得极值.
(1)求实数a的值,并求 的单调区间;
(2)关于x的方程 上恰有1个实数根,求实数b的取值范围;
(3)求证:当 时,
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 山东省潍坊市2019-2020学年高二下学期数学期中考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;