山东省威海市2020-2021学年高三上学期数学期末考试试卷

年级: 学科: 类型:期末考试 来源:91题库

一、单选题(共8小题)

1、已知集合 ,则 (    )
A . B . C . D .
2、设复数 满足 ,则 (    )
A . B . C . D .
3、已知向量 满足 ,则 (    )
A . 3 B . 7 C . D .
4、人们通常以分贝(符号是 )为单位来表示声音强度的等级.一般地,如果强度为 的声音对应的等级为 ,则有 ﹒生活在深海的抹香鲸是一种拥有高分贝声音的动物,其声音约为 ,而人类说话时,声音约为 则抹香鲸声音强度与人类说话时声音强度之比为(    )
A . B . C . D .
5、若关于 的不等式 的解集中恰有3个正整数,则实数 的取值范围为(    )
A . B . C . D .
6、已知函数 ,则(    )
A . B . C . D .
7、已知双曲线 的左、右焦点分别为 为双曲线左支上位于第二象限的一点,且满足 ,若直线 与圆 相切,则双曲线的离心率为(    )
A . B . C . D . 2
8、若关于 的方程 上有两个不等的实数根,则实数 的取值范围为(    )
A . B . C . D .

二、多选题(共4小题)

1、新时代的中国能源发展,把清洁低碳作为能源发展的主导方向,优化能源生产布局和消费结构,基本形成了原煤、原油、天然气、非化石能源多轮驱动的能源生产体系.下图为2012年至2019年中国能源生产情况统计,则(    )

图片_x0020_100002

A . 原煤在能源生产体系中所占比重最大,是保障能源供应的基础能源 B . 各类能源的产量在2016年都小幅回落 C . 非化石能源的生产量逐年增加 D . 原油和天然气的产量之和每年基本保持稳定
2、已知函数 的最小正周期为 ,将其图象向右平移 个单位得到一个偶函数图象,则(    )
A . 函数 的图象关于点 中心对称 B . 函数 上单调递增 C . 时,函数 的最大值为 D . 函数 上恰有三个不同的零点
3、在棱长为2的正方体 中, 分别为 的中点,则(    )
A . B . 平面 C . 平面 D . 过直线 且与直线 平行的平面截该正方体所得截面面积为
4、已知数列 ……,其中第一项是 ,接下来的两项是 再接下来的三项是 依次类推…,第 项记为 ,数列 的前 项和为 ,则(    )
A . B . C . D .

三、填空题(共3小题)

1、在 的展开式中,常数项等于
2、被誉为“中国现代数学之父”的著名数学家华罗庚先生为我国数学的发展做出了巨大贡献,他所倡导的“0.618优选法”在生产和科研实践中得到了广泛的应用.0.618就是黄金分割比 的近似值,黄金分割比还可以表示成 ,则
3、已知抛物线 的焦点为 上一点,以 为圆心, 为半径的圆交 的准线于 两点,若 三点共线,则

四、双空题(共1小题)

1、已知三棱锥 中点, 侧面 底面 ,则三棱锥 外接球的表面积为,过点 的平面截该三棱锥外接球所得截面面积的取值范围为

五、解答题(共6小题)

1、在① ,② ;③ 这三个条件中任选一个,补充在下面问题中,并做答.

问题:已知 的内角 的对边分别为   ▲  , 角 的平分线交 于点 ,求 的长.

(注:如果选择多个条件分别解答,按第一个解答计分.)

2、已知等差数列 的前n项和为 ,且满足 .
(1)求数列 的通项公式;
(2)若数列 满足 ,求数列 的前 项和 .
3、在三棱锥 中,底面 为正三角形,平面 平面 上一点, 为三角形 的中心.

图片_x0020_100008

(1)求证: 平面 ;
(2)若直线 与平面 所成的角为 ,求二面角 的余弦值.
4、已知函数 .
(1)当 时,求过点 且与曲线 相切的直线方程;
(2)若 ,求实数 的取值范围.
5、体检时,为了确定体检人是否患有某种疾病,需要对其血液采样进行化验,若结果呈阳性,则患有该疾病;若结果呈阴性,则未患有该疾病.对于 份血液样本,有以下两种检验方式:一是逐份检验,则需检验 次.二是混合检验,将 份血液样本分别取样混合在一起,若检验结果为阴性,那么这 份血液全为阴性,因而检验一次就够了﹔如果检验结果为阳性,为了明确这 份血液究竟哪些为阳性,就需要对它们再次取样逐份检验,则 份血液检验的次数共为 次.已知每位体检人未患有该疾病的概率为 ,而且各体检人是否患该疾病相互独立.
(1)若 ,求3位体检人的血液样本混合检验结果为阳性的概率;
(2)某定点医院现取得6位体检人的血液样本,考虑以下两种检验方案:

方案一:采用混合检验;

方案二:平均分成两组,每组3位体检人血液样本采用混合检验.

若检验次数的期望值越小,则方案越“优”.试问方案一、二哪个更“优”?请说明理由.

6、已知椭圆 的离心率为 分别是它的左、右顶点, 是它的右焦点,过点 作直线与 交于 (异于 )两点,当 轴时, 的面积为 .
(1)求 的标准方程;
(2)设直线 与直线 交于点 ,求证:点 在定直线上.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 山东省威海市2020-2021学年高三上学期数学期末考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;