浙江省杭州市2020-2021学年高三上学期数学期末考试试卷

年级: 学科: 类型:期末考试 来源:91题库

一、单选题(共10小题)

1、一个几何体的三视图如图所示,则该几何体的体积为(    )

图片_x0020_100002

A . 1 B . C . D .
2、若实数 满足 ,则“ ”是“ ”的(    )
A . 充分不必要条件 B . 必要不充分条件 C . 充要条件 D . 既不充分也不必要条件
3、函数 (其中 为自然对数的底数)图象的大致形状是(    )
A . 图片_x0020_100005 B . 图片_x0020_100006   C . 图片_x0020_100007 D . 图片_x0020_100008  
4、若集合 ,则 (     )
A . B . C . D .
5、已知 ,若 为虚数单位),则 (     )
A . -1 B . 0 C . 1 D . 2
6、已知随机变量满足 ,其中 .若 ,则 (     )
A . B . C . D .
7、已知 .则 (     )
A . -30 B . 30 C . -40 D . 40
8、已知实数 满足 ,且 ,则 的最小值为(     )
A . -7 B . -5 C . -3 D . -1
9、设函数 .若不等式 恒成立,则 的最大值为(     )
A . B . C . D .
10、设数列 满足 ,(    )
A . 存在 B . 存在 ,使得 是等差数列 C . 存在 D . 存在 ,使得 是等比数列

二、填空题(共7小题)

1、计算 .
2、在△ABC中,A= ,b=4,a=2 ,则B=,△ABC的面积等于
3、若 ,且 ,则 的最小值等于 的最大值等于.
4、已知 ,则 .
5、一排 个座位,现安排 人就座,规定中间的 个座位不能坐,且 人不相邻,则不同排法的种数是.
6、平面向量 的夹角为 ,且 ,则 的最大值为.
7、在棱长为 的正方体 中,棱 的中点分别为 ,点 在平面 内,作 平面 ,垂足为 .当点 内(包含边界)运动时,点 的轨迹所组成的图形的面积等于

图片_x0020_337569103

三、解答题(共5小题)

1、已知函数 的最小正周期为 .

(Ⅰ)求函数 的单调递增区间;

(Ⅱ)在锐角 中,若 ,求 的值.

2、已知函数 .

(Ⅰ)若 ,解不等式

(Ⅱ)设 是函数 的四个不同的零点,且 .问是否存在实数 ,使得 成等差数列?若存在,求出所有 的值;若不存在,说明理由.

3、在三棱锥 中, 为等腰直角三角形,点 分别是线段 的中点,点 在线段 上,且 .若 .

图片_x0020_100012

(Ⅰ)求证: 平面

(Ⅱ)求直线 与平面 所成的角.

4、在数列 中, 成等比数列,公比为 .

(Ⅰ)若 ,求

(Ⅱ)若 成等差数列,公差为 ,设 .

①求证: 为等差数列;

②若 ,求数列 的前 项和 .

5、已知函数 恰好有两个极值点 .

(Ⅰ)求证:存在实数 ,使

(Ⅱ)求证: .

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 浙江省杭州市2020-2021学年高三上学期数学期末考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;