河南省驻马店市2019-2020学年高二下学期理数期末考试试卷

年级: 学科: 类型:期末考试 来源:91题库

一、单选题(共12小题)

1、在对具有线性相关的两个变量 进行统计分析时,得到如下数据:

4

8

10

12

1

2

3

5

6

由表中数据求得 关于 的回归方程为 ,则 这三个样本点中落在回归直线下方的有( )个

A . 1 B . 2 C . 3 D . 0
2、设 ,则在复平面内 对应的点位于(    )
A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限
3、若双曲线 的离心率为2,则其渐近线方程为(    )
A . B . C . D .
4、在下列结论中,正确的是(    )
A . ”是“ ”的必要不充分条件 B . 为真命题,则p,q均为真命题 C . 命题“若 ,则 ”的否命题为“若 ,则 D . 已知命题 ,都有 ,则 ,使
5、用数学归纳法证明: 时,从“ ”等式左边的变化结果是(    )
A . 增乘一个因式 B . 增乘两个因式 C . 增乘一个因式 D . 增乘 同时除以
6、若两条不重合直线 的方向向量分别为 ,则 的位置关系是(    )
A . 平行 B . 相交 C . 垂直 D . 不确定
7、设函数 其中 ,则 的展开式中 的系数为(    )
A . -60 B . 60 C . -240 D . 240
8、在△ 中,若 ,则△ 的最大内角与最小内角的和为(    )
A . B . C . D .
9、已知正实数x,y满足 .则 的最小值为(    )
A . 4 B . C . D .
10、2020年教育部决定在部分高校中开展基础学科招生考试试点(也称为强基计划),某高校计划让参加“强基计划”招生的学生从8个试题中随机挑选4个进行作答,至少答对3个才能通过初试.已知在这8个试题中甲能够答对6个,则甲通过初试的概率为(    )
A . B . C . D .
11、已知椭圆 的左、右焦点分别为 ,点P在椭圆上且异于长轴端点,点M,N在△ 所围区域之外,且始终满足 ,则 的最大值为(    )
A . 8 B . 7 C . 10 D . 9
12、已知函数 ,数列 的前 项和为 ,且满足 ,则下列有关数列 的叙述正确的是(    )
A . B . C . D .

二、填空题(共4小题)

1、已知函数 ,则 的单调减区间为.
2、平面几何中直角三角形勾股定理是我们熟知的内容,即“在 中, ,则 ”;在立体几何中类比该性质,在三棱锥 中,若平面PAB,平面PAC,平面PBC两两垂直,记 的面积分别是 ,则 关系为.

图片_x0020_100001

3、某医疗研究所为了了解某种血清预防感冒的作用,把500名使用过该血清的人与另外500名未使用该血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”.已知利用2×2列联表计算得K2≈3.918,经查临界值表知P(K2≥3.841)≈0.05.则下列结论中,正确结论的序号是

①有95%的把握认为“这种血清能起到预防感冒的作用”;②若某人未使用该血清,那么他在一年中有95%的可能性得感冒;③这种血清预防感冒的有效率为95%;④这种血清预防感冒的有效率为5%.

4、在正方体 中,E,F分别为线段 ,AB的中点,O为四棱锥 的外接球的球心,点M,N分别是直线 ,EF上的动点,记直线OC与MN所成的角为 ,则当 最小时, .

三、解答题(共7小题)

1、已知 是单调递减的等比数列, ,且 成等差数列.
(1)求数列 的通项公式;
(2)设 ,求数列 的前50项和
2、如图,在五面体 中,四边形 为矩形, 为等边三角形,且平面 平面 .

图片_x0020_100005

(1)证明:平面 平面
(2)若 ,求二面角 的余弦值.
3、在直角坐标系xOy中,已知点 ,直线AM,BM交于点M,且直线AM与直线BM的斜率满足:
(1)求点M的轨迹C的方程;
(2)设直线l交曲线C于P,Q两点,若直线AP与直线AQ的斜率之积等于 ,证明:直线l过定点.
4、已知函数
(1)若 ,求 处的切线方程;
(2)若对 ,不等式 恒成立,求实数 的取值范围.
5、甲、乙两厂均生产某种零件.根据长期检测结果:甲、乙两厂生产的零件质量(单位: )均服从正态分布 ,在出厂检测处,直接将质量在 之外的零件作为废品处理,不予出厂;其它的准予出厂,并称为正品.
(1)出厂前,从甲厂生产的该种零件中抽取10件进行检查,求至少有1片是废品的概率;
(2)若规定该零件的“质量误差”计算方式为:该零件的质量为 ,则“质量误差” .按标准,其中“优等”、“一级”、“合格”零件的“质量误差”范围分别是 (正品零件中没有“质量误差”大于 的零件),每件价格分别为75元、65元、50元.现分别从甲、乙两厂生产的正品零件中随机抽取100件,相应的“质量误差”组成的样本数据如下表(用这个样本的频率分布估计总体分布,将频率视为概率):

质量误差

甲厂频数

10

30

30

5

10

5

10

乙厂频数

25

30

25

5

10

5

0

(ⅰ)记甲厂该种规格的2件正品零件售出的金额为 (元),求 的分布列及数学期望

(ⅱ)由上表可知,乙厂生产的该规格的正品零件只有“优等”、“一级”两种,求5件该规格零件售出的金额不少于360元的概率.

附:若随机变量 .则 .

6、在平面直角坐标系xOy中,直线 的参数方程为 (t为参数, 为倾斜角),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线 的极坐标方程为 ,在平面直角坐标系xOy中,将曲线 上所有点的横坐标不变,纵坐标伸长为原来的2倍,再向上平移2个单位长度得到曲线
(1)求曲线 的直角坐标方程;
(2)直线 与曲线 相交于E,F两个不同的点,点P的极坐标为 ,若 ,求直线 的普通方程.
7、已知函数
(1)当 时,求不等式 的解集;
(2)若两函数 的图象恒有公共点,求实数m的取值范围.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 河南省驻马店市2019-2020学年高二下学期理数期末考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;