2021高考一轮复习 第三十五讲 坐标系
年级: 学科: 类型: 来源:91题库
一、单选题(共10小题)
1、在极坐标系中,曲线
与极轴交于
两点,则
两点间的距离等于( )



A .
B .
C .
D .




2、在同一平面直角坐标系中经过伸缩变换
后曲线C变为曲线
,则曲线C的方程为( )


A .
B .
C .
D .




3、将点
的极坐标
化成直角坐标是( )


A .
B .
C .
D .




4、极坐标方程ρ=1表示( )
A . 直线
B . 射线
C . 圆
D . 椭圆
5、在极坐标系中,曲线
关于( )

A . 直线
对称
B . 直线
对称
C . 点
对称
D . 极点对称



6、在极坐标系中,下列方程为圆
的切线方程的是( )

A .
B .
C .
D .




7、已知点
,则它的极坐标是( )

A .
B .
C .
D .




8、在极坐标系中,A为直线
上的动点,B为曲线
上的动点,则
的最小值为 ( )



A . 1
B . 2
C .
D . 3

9、极坐标方程(ρ-1)(θ-π)=0(ρ≥0)表示的图形是( )
A . 两个圆
B . 两条直线
C . 一个圆和一条射线
D . 一条直线和一条射线
10、在极坐标系中,点
到圆
的圆心的距离为( )


A . 2
B .
C .
D .



二、填空题(共6小题)
1、平面直角坐标系中,若点
经过伸缩变换
后的点为
,则极坐标系中,极坐标为
的点到极轴所在直线的距离等于.




2、平面直角坐标系
中,点
在曲线
:
(
为参数,
)上. 以原点
为极点,
轴正半轴为极轴建立极坐标系,若点
,
的极坐标分别为
且点
,
都在曲线
上,则
.















3、将极坐标方程
化为直角坐标方程得.

4、极坐标系中,曲线
上的点到直线
的距离的最大值是.


5、在极坐标系中,O为极点,已知
两点的极坐标分别为
,
,则
的面积为.




6、已知曲线C的极坐标方程为
,以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,那么曲线C的直角坐标方程为.

三、解答题(共5小题)
1、在直角坐标系
中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为
,曲线C的极坐标方程为
.



(Ⅰ)求直线l和曲线C的直角坐标方程;
(Ⅱ)点M为曲线C上一点,求M到直线l的最小距离.
2、在极坐标系中,曲线
:
,曲线
:
,曲线
相交于
两点.






(1)求曲线
、
的直角坐标方程;


(2)求弦
长.

3、已知平面直角坐标系
中,曲线
的方程为
,以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为
.若将曲线
上的所有点的横坐标缩小到原来的一半,纵坐标伸长到原来的
倍,得曲线
.







(1)写出直线l和曲线
的直角坐标方程;

(2)设点
, 直线l与曲线
的两个交点分别为A,B,求
的值.



4、在极坐标系中,已知直线
(m为实数),曲线
,当直线l被曲线C截得的弦长取得最大值时,求实数m的值.


5、[选修4-4:坐标系与参数方程]
在极坐标系中,已知点 在直线
上,点
在圆
上(其中
,
).
(1)求
,
的值


(2)求出直线l与圆C的公共点的极坐标.