人教A版(2019)数学必修第二册 9.2用样本估计总体
年级: 学科: 类型:同步测试 来源:91题库
一、单选题(共10小题)
1、一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[20,60)上的频率为0.8,则估计样本在[40,50),[50,60)内的数据个数共为 ( )
A . 14
B . 15
C . 16
D . 17
2、为了了解高一年级学生的体锻情况,学校随机抽查了该年级20个同学,调查他们平均每天在课外从事体育锻炼的时间(分钟),根据所得数据的茎叶图,以5为组距将数据分为八组,分别是[0,5),[5,10),…[35,40],作出的频率分布直方图如图所示,则原始的茎叶图可能是( )
A .
B .
C .
D .




3、下边的折线图给出的是甲、乙两只股票在某年中每月的收盘价格,已知股票甲的极差是6.88元,标准差为2.04元;股票乙的极差为27.47元,标准差为9.63元,根据这两只股票在这一年中的波动程度,给出下列结论:①股票甲在这一年中波动相对较小,表现的更加稳定;②购买股票乙风险高但可能获得高回报;③股票甲的走势相对平稳,股票乙的股价波动较大;④两只般票在全年都处于上升趋势.其中正确结论的个数是( )
A . 1
B . 2
C . 3
D . 4
4、去年年底甲、乙、丙、丁四个县人口总数为m万,各县人口占比如图,其中丙县人口为70万,则去年年底甲县的人口为( )
A . 162万
B . 176万
C . 182万
D . 186万
5、如果数据x1 , x2 , …,xn的平均数是
,方差是s2 , 则3x1+2,3x2+2,…,3xn+2的平均数和方差分别是 ( )

A .
和s2
B . 3
和9s2
C . 3
+2和9s2
D . 3
+2和12s2+4




6、海水养殖场收获时随机抽取了100个养殖网箱,测量各网箱水产品产量(单位:
),其频率分布直方图如图,则估计此样本中位数为( )

A . 50.00
B . 51.80
C . 52.35
D . 52.50
7、为弘扬中华民族传统文化,某中学学生会对本校高一年级1000名学生课余时间参加传统文化活动的情况,随机抽取50名学生进行调查,将数据分组整理后,列表如下:
参加场数 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
参加人数占调查人数的百分比 | 8% | 10% | 20% | 26% | 18% | 12% | 4% | 2% |
估计该校高一学生参加传统文化活动情况正确的是( ).
A . 参加活动次数是3场的学生约为360人
B . 参加活动次数是2场或4场的学生约为480人
C . 参加活动次数不高于2场的学生约为280人
D . 参加活动次数不低于4场的学生约为360人
8、将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数茎叶图,后来有一个数据模糊,无法辨认,在图中以
表示:

则7个剩余分数的方差为( )
A . 36
B .
C .
D .



9、频率分布直方图中每个矩形的面积所对应的数字特征是( )
A . 频数
B . 众数
C . 平均数
D . 频率
10、新高考改革后,某校2000名学生参加物理学考,该校学生物理成绩的频率分布直方图如图所示,若规定分数达到90分以上为A级,则该校学生物理成绩达到A级的人数是( )
A . 600
B . 300
C . 60
D . 30
二、填空题(共5小题)
1、从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).由图中数据可知a=,估计该小学学生身高的中位数为
2、数据x1 , x2 , x3 , x4 , x5的方差是2,则数据x1-1,x2-1,x3-1,x4-1,x5-1的方差是 .
3、已知一组数据6,7,8,8,9,10,则该组数据的方差是 .
4、在样本的频率分布直方图中,共有
个小长方形,若中间一个长方形的面积等于其他
个小长方形面积的和的
,且样本容量为
,则中间一组的频数为 .




5、为了解一片经济林的生长情况,随机抽取了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100 cm.
三、解答题(共5小题)
1、某高科技公司投入1000万元研发某种产品,大规模投产后,在产品出库进入市场前,需做严格的质量检验.为此,从库房的产品中随机抽取200件,检测一项关键的质量指标值(记为
),由检测结果得到如下样本频率分布直方图:

(1)求这200件产品质量指标值的样本平均数
,样本方差
(同一组数据用该区间的中点值作代表);


(2)该公司规定:当
时,产品为正品;当
时,产品为次品.公司每生产一件这种产品,若是正品,则盈利80元;若是次品,则亏损20元.


①估计这200件产品中正品、次品各有多少件;
②求公司生产一件这种产品的平均利润.
2、某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表。
y的分组 | [-0.20,0) | [0,0.20) | [0.20,0.40) | [0.40,0.60) | [0.60,0.80) |
企业数 | 2 | 24 | 53 | 14 | 7 |
附:
(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;
(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)
3、某城市
户居民的月平均用电量(单位:度),以
,
,
,
,
,
,
分组的频率分布直方图如图.








(1)求直方图中x的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为
,
,
,
的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在
的用户中应抽取多少户?





4、
年年底,某城市地铁交通建设项目已经基本完成,为了解市民对该项目的满意度,分别从不同地铁站点随机抽取若干市民对该项目进行评分(满分
分),绘制如下频率分布直方图,并将分数从低到高分为四个等级:


满意度评分 | 低于60分 | 60分到79分 | 80分到89分 | 不低于90分 |
满意度等级 | 不满意 | 基本满意 | 满意 | 非常满意 |
已知满意度等级为基本满意的有 人.
(1)求频率分布于直方图中
的值,及评分等级不满意的人数;

(2)相关部门对项目进行验收,验收的硬性指标是:市民对该项目的满意指数不低于
,否则该项目需进行整改,根据你所学的统计知识,判断该项目能否通过验收,并说明理由.

5、为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:
(1)填充频率分布表的空格(将答案直接填在表格内);
(2)补全频数分布直方图;
(3)若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?