备考2020年高考数学一轮复习:61 古典概型
年级: 学科: 类型: 来源:91题库
一、单选题(共12小题)
1、生物实验室有5只兔子,其中只有3只测量过某项指标。若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )
A .
B .
C .
D .




2、大学生小明与另外3名大学生一起分配到某乡镇甲、乙丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小明恰好分配到甲村小学的概率为( )
A .
B .
C .
D .




3、《易经》是我国古代预测未来的著作,其中同时抛掷三枚古钱币观察正反面进行预测未知,则抛掷一次时出现两枚正面一枚反面的概率为( )
A .
B .
C .
D .




4、打开手机时,忘记了开机的六位密码的第二位和第四位,只记得第二位是7,8,9中的一个数字,第四位是1,2,3中的一个数字,则他输入一次能够开机的概率是( )
A .
B .
C .
D .




5、2019年,河北等8省公布了高考改革综合方案将采取“3+1+2”模式,即语文、数学、英语必考,然后考生先在物理、历史中选择1门,再在思想政治、地理、化学、生物中选择2门.一名同学随机选择3门功课,则该同学选到物理、地理两门功课的概率为( )
A .
B .
C .
D .




6、任取一个三位正整数
,则对数
是一个正整数的概率是( )


A .
B .
C .
D .




7、若10件产品中包含8件一等品,在其中任取2件,则在已知取出的2件中有1件不是一等品的条件下,另1件是一等品的概率为( )
A .
B .
C .
D .




8、一个袋子中装有大小形状完全相同的4个白球和3个黑球,从中一次摸出3个球,已知摸出球的颜色不全相同,则摸出白球个数多于黑球个数的概率为( )
A .
B .
C .
D .




9、《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛、齐王获胜的概率是( )
A .
B .
C .
D .




10、从集合
的所有子集中,任取一个,这个集合恰是集合
子集的概率是( )


A .
B .
C .
D .




11、某人在微信群中发一个8元“拼手气”红包,被甲、乙、丙三人抢完,若三人均领到整数元,且每人至少领到1元,则甲领到的钱数不少于其他任何人的概率为( )
A .
B .
C .
D .




12、从10名高三年级优秀学生中挑选3人担任校长助理,则甲、乙至少有1人入选,而丙没有入选的概率为( )
A .
B .
C .
D .




二、填空题(共5小题)
1、三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 .
2、同时转动如图所示的两个转盘,记转盘甲得到的数为x,转盘乙得到的数为y,构成数对(x,y),则所有数对(x,y)中满足xy=4的概率为 .
3、如图,某建筑工地搭建的脚手架局部类似于一个
的长方体框架,一个建筑工人欲从 A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为 .

4、在大小相同的6个球中,2个是红球,4个是白球.若从中任意选取3个,则所选的3个球中至少有1个红球的概率是 .(结果用分数表示)
5、从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 .
三、解答题(共5小题)
1、某高级中学共有学生2000名,各年级男、女生人数如下表:
高一年级 |
高二年级 |
高三年级 |
|
女生 |
373 |
x |
y |
男生 |
377 |
370 |
z |
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.
(1)求
的值;

(2)现用分层抽样的方法在全校抽取48名学生,问应该在高三年级抽取多少名?
(3)已知
,
,求高三年级中女生比男生多的概率.


2、乡大学生携手回乡创业,他们引进某种果树在家乡进行种植试验.他们分别在五种不同的试验田中种植了这种果树100株并记录了五种不同的试验田中果树的死亡数,得到如下数据:
试验田 |
试验田1 |
试验田2 |
试验田3 |
试验田4 |
试验田5 |
死亡数 |
23 |
32 |
24 |
29 |
17 |
(Ⅰ)求这五种不同的试验田中果树的平均死亡数;
(Ⅱ)从五种不同的试验田中随机取两种试验田的果树死亡数,记为x,y,用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)视为同一事件,并求 的概率.
3、甲乙两名篮球运动员分别在各自不同的5场比赛所得篮板球数的茎叶图如图所示,已知两名运动员在各自5场比赛所得平均篮板球数均为10.
(1)求x,y的值;
(2)求甲乙所得篮板球数的方差
和
,并指出哪位运动员篮板球水平更稳定;


(3)教练员要对甲乙两名运动员篮板球的整体水平进行评估.现在甲乙各自的5场比赛中各选一场进行评估,则两名运动员所得篮板球之和小于18的概率.
4、口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5.甲先摸出一个球,记下编号为
,放回袋中后,乙再摸一个球,记下编号为
.


(1)求“
”的事件发生的概率;

(2)若点
落在圆
内,则甲赢,否则算乙赢,这个游戏规则公平吗?试说明理由.


5、某大学生从全校学生中随机选取
名统计他们的鞋码大小,得到如下数据:

鞋码 | 合计 | ||||||||||
男生 | |||||||||||
女生 |
以各性别各鞋码出现的频率为概率.
(1)从该校随机挑选一名学生,求他(她)的鞋码为奇数的概率.
(2)为了解该校学生考试作弊的情况,从该校随机挑选
名学生进行抽样调查.每位学生从装有除颜色外无差别的
个红球和
个白球的口袋中,随机摸出两个球,若同色,则如实回答其鞋码是否为奇数;若不同色,则如实回答是否曾在考试中作弊.这里的回答,是指在纸上写下“是”或“否”.若调查人员回收到
张“是”的小纸条,试估计该校学生在考试中曾有作弊行为的概率.



